

EGR 402 – Capstone Design & Presentation

Design History File – Final Report

Team Name: DiWheel

Team Members: Kari Dennis

 Kevin McLaughlin

 Christopher Vanjoff

 Joshua Dean

 Christopher Parisi

Client: Dr. Matthew Rickard

Technical Advisors: Dr. Keith Hekman and Dr. Mark Gordon

Date Submitted: Friday April 19, 2013

2

Table of Contents

0. Abstract .. 5

1. Milestone 1: Problem Definition and Needs Identification ... 6

1.1 Initial Problem Statement .. 7

1.2 Client Interview ... 8

1.3 Background Information and Relative Technology .. 10

1.3.1 Background Information .. 10

1.3.2 Theory ... 10

1.3.3 Relative Technology ... 11

1.4 Objectives Tree .. 14

1.5 Pairwise Comparison Chart ... 15

1.6 Problem Definition .. 16

2. Milestone 2: Requirements Specification .. 17

2.1 Constraints ... 18

2.2 Standards ... 19

2.3 Requirements Specifications ... 20

3. Milestone 3: Concept Generation and Selection ... 22

3.1 Concept Generation ... 23

3.2 Concept Selection .. 25

4. Milestone 4: Design Architecture and Detailed Design .. 27

4.1 Design Architecture ... 28

4.1.1 Product Schematic with Clusters .. 29

4.1.2 Geometric Layout ... 30

4.1.3 Incidental Interaction Graph ... 31

4.2 Electrical Design Architecture .. 32

4.2.1 Level 0 .. 32

4.2.2 Level 1 .. 33

4.3 Mechanical Detailed Design .. 43

4.4 Electrical Detailed Design ... 53

4.4.1 Hardware Design .. 54

3

4.4.2 Software Design ... 60

4.4.3 Diwheel Controls .. 62

5. Milestone 5: Prototyping ... 63

5.1 Mechanical Prototyping ... 64

5.2 Electrical Prototyping .. 81

6. Milestone 6: Testing and Verification ... 94

6.1 Mechanical Component Testing .. 95

6.1.1 Guide Wheels ... 95

6.1.2 Leveling Set-Up .. 97

6.1.3 Drive Train ... 100

6.1.4 Controller Testing ... 103

6.2 Electrical Component Testing ... 105

6.2.1 Wireless Receiver/Transmitter ... 106

6.2.2 Drive Wheel Motor Drivers .. 107

6.2.3 10A Motor Driver Arduino Shield ... 110

6.2.4 IMU Sensor .. 113

6.2.5 Arduino Uno Microcontroller ... 115

6.3 Diwheel System Testing .. 116

6.3.1 Systems Integration .. 116

6.3.2 Drivability Testing .. 119

6.3.3 Linear motor function testing. .. 123

6.4 Specifications Testing ... 125

6.5 Future Testing Plan .. 126

Conclusion ... 127

A. Appendix A: Project Management Plan ... 128

A.1 Work Breakdown Structure .. 129

A.2 Gantt Chart ... 130

A.3 Statement of Work .. 133

B. Appendix B: Detailed Design ... 134

B.1 Drawings ... 134

4

B.2 Specifications .. 145

B.3 Parts List and Budget .. 156

C. Appendix C: Arduino Sketch .. 158

C.1 Initial Diwheel Program .. 159

C.2 Updated Diwheel Program .. 166

D. Appendix D: MatLab Controls Derivations ... 175

D.1 Dynamics Derivations .. 175

D.2 Sliding Weight Position Controller .. 177

5

0.	 Abstract

The diwheel has been around for centuries. At its basics, it is two wheels that rotate on

the same axis with a center chassis in between them. They have evolved from simple pedal

power to now being electrically driven with controls for stability. Most designs for diwheels

today are very simple without any stability correcting and as a result the chassis swings and

rocks every time the vehicle accelerates or decelerates. This problem is especially pertinent when

trying to mount a device onto the chassis. The team realized the problem of being able to keep

the chassis level and sought a solution.

The team performed research on related technologies on the market already that could be

used as well as the theory that would need to be known. They talked with the client to further

define what the project itself would look like and began to formulate a list of objectives that the

project would entail. The two main objectives were Marketability and Functionality. A Pairwise

comparison chart was made to prioritize the different qualities that the device should possess.

After all these steps were taken, a formal problem definition was developed. This definition

stated that the team would design a two-wheeled, durable, mobile, radio controlled vehicle that

can have different hardware, such as a camera or flashlight, mounted to it. The main chassis will

have controls built into it so that the hardware will stay level.

After the formal problem definition was made, the team created the work breakdown

structure, which outlined what steps need to be taken to finish the design process. The chart was

then fit to a timeline in the Gantt chart.

The team then began to design the device by first defining the constraints, standards, and

specifications. The only constraint was that the device would not hinder the functionality of the

bike, and the standards had to do with shipping, outlet size, and water/dust proofing. These

constraints and standards went into the specifications, which had to be quantifiable and testable.

6

1.	 Milestone	 1:	 Problem	 Definition	 and	 Needs	 Identification	

In this milestone, the design team will provide the following sections: Initial Problem

Statement, Background Information, Client Interview, Objective Tree, Pairwise Comparison

Chart, and Problem Definition. The initial problem statement says what problem the team is

trying to solve. The background information is the information necessary to develop an answer.

The client interview subsection is a report of how the interview with the client went in discussing

the problem definition and the project as a whole. The objective tree is the graphical display of

what objectives the team wants to accomplish and all the pieces necessary in completing such

task. The pairwise comparison chart is a method used to determine the priority of different

qualities that we want the product to have. Finally, the problem definition is the compilation of

all of these pieces in a more elaborate version of the problem statement.

7

1.1	 Initial	 Problem	 Statement	

The design team was given this problem statement from the client with the motivation to

improve on the previously attempted projects. The project is being built with military/police

application in mind. The following problem statement stands as the original problem with the

most basic guidelines to solving it. This statement will be the foundation of the project. It is later

updated in section 1.6 based upon the information found in sections 1.2 through 1.5.

The client wants to have a two-wheeled, durable, mobile, radio controlled vehicle that

can have different hardware, such as a camera or flashlight, mounted to it. The main chassis

needs to have controls built in so that the hardware will stay level.

8

1.2	 Client	 Interview	

We met with our technical advisor in order to get a grip on what technical aspects we

would need to get comfortable with in order to complete this project. This included different

existing technologies we will encounter as well as the kinds of equations we would need to solve

and understand in order for our device to work.

We also set up a meeting with our client to give us a chance to introduce ourselves to

who we were working for. It was our goal to clarify the project with him and let him know that

we were determined and willing to complete this project in an effective and timely manner. One

of our goals related to the client meeting was to gain personal contact with the client and become

comfortable with him as he becomes comfortable with us. Another main topic of this discussion

was to clarify some concerns we had with the project and get a clear direction.

Our Client is Dr. Matthew Rickard, Mechanical Engineering Professor at California

Baptist University. We will meet with him for information and conformation throughout the

entire project.

Dr. Rickard: So what is the project you will be designing?

Team DiWheel: We will be designing a diwheel. We would like to build a full scale prototype

that uses controls to operate it.

Rickard: How would it be controlled?

Team: We were thinking we would have a joystick for each wheel to allow us to go forward and

backward and would also allow us to rotate.

Team: Based on our budget, do you suggest we design a full scale or scaled version of the

diwheel?

Rickard: It will depend on the materials. It may be difficult to find a large wheel for a full scale.

Research the cost of materials and also availability of parts, such as the wheel, to determine

which design route to take.

9

View examples of diwheels on YouTube

Rickard: What will you implement that will make your design unique and different from

diwheel projects that have already been done?

Team: Building a scaled model might be better if we want to add a unique feature. We could

focus on designing a functional scaled version and then add new features to it. We could

implement suspension and build a jump or track for the diwheel. Adding a safety feature could

also be a unique aspect of our design.

	
	
	
	
	

10

1.3	 Background	 Information	 and	 Relative	 Technology	

This subsection provides the research that the team has done that is needed to start the

project. It includes models and technologies already out in the market that provides similar

functions. It also provides the physics and science behind the product itself. For this project in

particular, that would include dynamic equations for the forces on the diwheel such as the

rotation of the wheel and the center of mass of the chassis.

1.3.1	 Background	 Information	

The diwheel (also known as a dicycle) has been around for almost two centuries, this

recreational vehicle is constructed of two large outer wheels that are located side by side. These

wheels encompass the inner frame where the driver sits, and are usually powered by two electric

motors. Sloshing and tumbling have been two major issues with the diwheel since its invention.

Sloshing refers to the oscillating motion the inner frame experiences during transportation due to

the offset center of gravity. Tumbling is when the inner frame completely flips over with

extreme braking and accelerating. Both of these issues can be reduce with the use of damping

feedback controls. There has not been an enormous market for these vehicles yet because they

have not been legalized for road use and the feedback control system has not been refined to a

marketable state.

1.3.2	 Theory	

 The first step to solving how a diwheel functions is to determine the dynamics behind its

motion. The control system can only be started after the equation of motion is determined.

There are many equations that can describe the motion of a diwheel and they have to be broken

up into several sub equations for simplicity. The diwheel system is comprised of two degrees of

freedom in the xy-plane. The system also has three coordinates:

θ is the rotation of the inner frame about the z-axis

φL=φR=φ which is the rotation of the outer wheels about the z-axis

x is the displacement of the whole diwheel as a system relative to the earth

11

This is a diagram that shows how the different variables related to the physical structure of the

diwheel.

Dynamic equations need to be derived using the listed variables to solve for velocities,

kinetic energies, potential energies and the Euler-Lagrange equations. All of these formulas

comprise the motion of a diwheel and will be vital when programming the control systems.

Apart from the equations of motion are the equations that are relating to the input

velocity and input torque of the motors that are going to power the diwheel. Permanent magnet

DC motors with brushes are a common type of electric motor that will serve the purpose of

powering the diwheel. The equations that are derived for the electric motor are used alongside

the equations of motion to help create a dynamic control system.

1.3.3	 Relative	 Technology	 	

Although the diwheel has been around for a couple hundred years, there is still not an

abundance of the actual creation roaming the streets. These vehicles have been limited to

hobbyists and student design projects. There is one design that has gone above and beyond what

anyone else has done with the diwheel. There was a project that was created by the University of

Adelaide that constructed a full sized diwheel equipped with suspension and powered by DC

electric motors. They have also shown their equations of motion and briefly discussed the

control system they used. There are some other models that are full sized, but they are human

12

powered. Most of these designs have a through axel that connects both wheels and allows the

frame to hang underneath the axel. The few designs that are available to look at will allow our

team to gain knowledge and in the construction of our own design.

Simple electric motors are found in many different devices that are used every day. The

size and functionality of electric motors range from tiny brushless DC motors used in artificial

hearts to enormous AC motors that are used in hydroelectric dams. Electric motors are a useful

piece of technology for the consumer, and also very practical for industries that need mechanical

energy without the use of combustion engines.

Microprocessors are the future of technology because they are a very important

component when constructing computers. Mechanical devices such as vehicles, robots and

machines alike rely heavily on this type of technology because there are many physical

movements that need to be fed though a microprocessor and then processed so that the right

mechanical movement can be implemented.

Other diwheel designs have used various technologies to implement their controls. The

diwheel engineered by the University of Adelaide used dSpace rapid prototyping hardware for

their controls. Another diwheel team used a wireless router connected to a microcontroller for

their control system. Microcontrollers are useful in bringing together all the inputs and outputs in

order to gain control of the system. With a diwheel, the microcontroller will control the electric

motors and the functionality of the device. It will also contain the algorithms for controlling the

slosh of the device.

13

Sources:

Dicycle, Wikipedia, Mediawiki, page last modified October 3, 2012, site visited October 10,

2012 <http://en.wikipedia.org/wiki/Dicycle>

Control of an electric diwheel, B. Cazzolato, J. Harvey, C. Dyer, K. Fulton, E. Schumann, C.

Zhu and Z. Prime. University of Adelaide.

<http://data.mecheng.adelaide.edu.au/robotics/projects/2009/EDWARD/DiwheelPaper_v

3.pdf>

EDWARD - Electric Diwheel With Active Rotation Damping, University of Adelaide, pd_forms

website system.

<http://sites.mecheng.adelaide.edu.au/robotics/robotics_projects.php?wpage_id=44&title

=60&browsebytitle=1>

Cazzolato, Ben, Dr. "University of Adelaide Undergraduates Design, Build, and Control

an Electric Diwheel Using Model-Based Design." MathWorks.com. N.p., 2012. Web. 08 Oct.

2012. <http://www.mathworks.com/company/newsletters/articles/university-of-adelaide-

undergraduates-design-build-and-control-an-electric-diwheel-using-model-based-

design.html>.

Cazzolato, Ben S., Dr., Chris Dyer, Kane Fulton, Jonathon Harvey, Evan Schumann, Charles

Zhu, and Luke Francou. "Section Navigation." Mecheng.adelaide.edu. The University of

Adelaide, 12 Dec. 2010. Web. 08 Oct. 2012.

<http://sites.mecheng.adelaide.edu.au/robotics/robotics_projects.php?browsebytitle=1>.

"Diwheel." Sariel.pl. N.p., n.d. Web. 08 Oct. 2012. <http://sariel.pl/2009/01/diwheel/>.

"Diwheel Exploror." LEGO.com MINDSTORMS. N.p., n.d. Web. 08 Oct. 2012.

<http://us.mindstorms.lego.com/en-us/Community/NXTLog/DisplayProject.aspx?id=37b7cc3f-

02e3-4258-a4fb-cce6ea91b91a>.

Mitchdenda. "Rutgers MAE Senior Design 2012 Autonomous Di Wheel Robot."YouTube. N.p.,

01 May 2012. Web. 08 Oct. 2012. <http://www.youtube.com/watch?v=WGyEQHuc8ts>.

14

1.4	 Objectives	 Tree	

An objectives tree is a flow chart of each objective that a certain project needs to

accomplish. For each objective on the tree there are subsections that list what the objective must

cover. For this specific project there are two main objectives, Functionality and Marketability.

For each objective there are subcategories that the objective needs to address. An example of

subcategories for this project is for Marketability; it needs to address Durability, Versatility,

Mobility, Portability and External Hardware Attachment.

15

1.5	 Pairwise	 Comparison	 Chart	

As a team, we understand the importance of establishing the priority of different

attributes of the device. This is another form of communication among team members by

creating a standard that all members will be held to. If there is ever a situation where one

attribute will have to be chosen over another, this chart will allow for a quick, decisive decision

that will not be disputed. This chart works by comparing one attribute against another and

deciding which one has greater priority. If the attribute on the left hand side has greater priority

than the attribute in comparison above, a 1 is marked in the box. If it is not of greater priority, a 0

is marked in the box. After all the boxes are marked, the points are added from left to right. The

attribute with the highest score has the highest priority.

Listed below are the attributes and their descriptions in order of greatest to least importance.

5) Safety- This attribute covers the safety for the user of the diwheel. In order to keep the user

safe there must be an emergency shut off on the remote. Also, if the signal to the diwheel is lost

it will automatically shut off.

4) Cost– This attribute entails the cost to build the final product which affects the retail price.

3) Leveling – This attribute is the ability of the chasis and attached hardware to stay level while

the diwheel is in motion.

2) Mobility – This attribute covers the diwheel’s multidirectional specifications. The diwheel

will need be able to travel forward, backward, and also turn in order to achieve optimal mobility.

1) Maintenance – This attribute covers two main things, durability and repair. The main concern

is making the device durable enough to handle obstacles, jumps, and various terrains. This

attribute also entails if and how repairs will happen.

0) Weight – This pertains to the weight of the diwheel as an entire vehicle. In order to maintain

reasonable power consumption and speed, the diwheel will need to be an appropriate weight.

 Weight Maintenance Mobility Safety Leveling Cost TOTAL
Weight 0 0 0 0 0 0
Maintenance 1 0 0 0 0 1
Mobility 1 1 0 0 0 2
Safety 1 1 1 1 1 5
Leveling 1 1 1 0 0 3
Cost 1 1 1 0 1 4

16

1.6	 Problem	 Definition	

The problem definition is a summation of what our product is going look like and a basic

over all representation of what the product should be able to do. These aspects are going to be

the guidelines of the project and will give a good idea of how the final product should perform.

It will merely be an outline and will not give exact specifications on how the product should

perform.

After meeting with the client, we have developed the following problem definition:

 The problem that we have been given to solve is to design a two-wheeled, mobile,

durable vehicle on which different hardware can be mounted and kept level. Diwheel mobility

should include the ability to move forward, backward, and in circles using some form of radio

control. For vehicles with two wheels in parallel side by side, the problem comes in keeping the

center chassis level. Our project should incorporate a unique way to keep the chassis level while

in motion. Because the only connection between the chassis and the wheels is through the drive

train, adding any torsional correction for stability will take away from the power being delivered

to the wheels. Our team must design a way to incorporate stability without taking away from the

power.

17

2.	 Milestone	 2:	 Requirements	 Specification	

This milestone includes the first subsections about specifications for the device.

Specifications have to be qualities that can be tested and quantified in a repeatable manner.

These specifications are driven by three things: Objectives, Constraints, and Standards.

Objectives are found in the problem definition and help form what specifications can be made.

Constraints are specifications that are driven by the client. Standards are specifications that are

driven by government standards. Every specification will fall into at least one objective and will

remain inside the bounds of constraints and standards.

18

2.1	 Constraints	

Constraints are client driven specifications. The following categories of constraints were

emphasized by the client: weight of the components and attached hardware, velocity of the

device, impact resistance of the device, economics of the project, acceleration of the device,

leveling of the chassis, battery longevity, and safety of the device. Each category is coupled with

an exact specification that the client is looking for in the device. Below are the exact

specifications that the client is looking for in the end product.

The total weight of the device will not exceed 30kg and will have a target

weight of 25kg so that it can be easily transported by no more than two people. Each

component, mechanical and electrical, will have a target weight of 15kg.

The velocity of the device will exceed 7.3m/s, the maximum running speed of a human

being. The device should be able to catch a human being running at full speed.

The device will be able to drive a minimum of 2 m/s on cement, asphalt, and short grass

on a 5 degree incline. It will not be designed to traverse all types of terrain.

The device should be able to withstand a drop from 0.5 meters without experiencing any

difficulties performing its functions.

 The cost of remote controlled diwheel must be within the given budget of $1000. The

design will be based upon the cost of materials and components.

 The device should be able to accelerate to 7.3 m/s, in no more than 3 seconds with a

target of 1.5 seconds. This acceleration will be on asphalt, not grass where it may decrease.

The leveling of the chassis is part of the unique design goal. When starting the chassis

should not exceed an angle of 15 degrees and when stopping from 7.3 m/s, the chassis should not

exceed an angle of -15 degrees. This will keep the attached hardware level while in motion.

 The batteries will be rechargeable and be able to last for at least 20 minutes from a fully

charged state. This time will allow for short demonstrations of the device.

 The safety of the device should include a failsafe unit in case of frequency disturbance or

if the receiver becomes out of range; the device should shut down when an error occurs.

The device will be able to be controlled within a minimum range of 100 meters so the

user can see the device and be able to safely operate it.

19

2.2	 Standards	

Standards are specifications that are driven by government regulations that the device has

to follow. The product will utilize wireless communication through radio frequency. The design

team will follow the IEEE and FCC standards for frequency range when designing the device.

The IEEE C95.1-2005 standard for “Safety Level with Respect to Human Exposure to

Radio Frequency and Electromagnetic Fields” states that ranges should be between 3 kHz and

300 GHz. Our device will operate within this range in order to keep the user and bystanders in

close proximity to the device safe from hazardous frequencies.

 To protect the device against harmful water and dust damage the Ingress Protection code

54 was chosen. This code states that the device will be water and dust resistant.

20

2.3	 Requirements	 Specifications	

The requirement specifications section is designated to introduce specific design

requirements that the product will strictly follow. There are boundaries that have been

established in order to keep the design following a specific path. There is a table that illustrates

the specification that the design must abide by, a justification or reason why this specification

was put in place and finally the objective that the specification will support. A list of the product

objectives will also be listed for a quick comparison.

Objectives

1 Durable

2 Manoeuvrability

3 Mobile

4 Portable

5 External Hardware Attachment

6 Remote Controlled

7 Electrical Leveling

8 Structural

9 Mechanical Leveling

10 Drive Train

11 Safety

12 Price

21

Objective Specification Justification

3,4
The mechanical components of the device will not
exceed a weight of 15kg and will have a target
weight of 10kg.

The completed device will need to
be easily transported by a
maximum of two people.

3,4
The electrical components of the device will not
exceed a weight of 15kg and will have a target
weight of 10kg.

The completed device will need to
be easily transported by a
maximum of two people.

1,11
The vital components of the device need to be water
and dust resistant and follow code IP54 (Ingress
Protection Code).

The device is to be water and dust
resistant so it can still properly
function while driving in wet or
dusty conditions.

2,3,10
The maximum velocity of the device will exceed the
maximum running velocity of a human being, 7.3
m/s.

The device will be able to catch up
to a human being running at full
speed, approximately 20 mph.

1,8 The vehicle should be able to sustain a drop from 0.5
meters and not lose any function.

The vehicle should be designed to
be able to traverse rough terrain.
As a design goal we want it to be
able to be dropped and fall in any
orientation and still maintain
functionality.

12 The target price for production of this device is
approximately $1000.

This project has been given a
budget of $1000.

2,3,10
The device should be able to accelerate to top speed,
7.3 m/s, in no more than 3 seconds with a target of
1.5 seconds.

The device should be able to reach
full speed in an equivalent time
that a human would reach top
sprint speed.

2,3,5,8,9 The device will be able to hold external hardware
with a maximum weight of 7.5 kg

The weight of the hardware should
be no more than half of the weight
of the device.

2,3,10

The device chassis should not exceed a maximum
angle of 15 degrees when starting from a stop and
accelerating straight forward. It also needs to not
exceed a maximum angle of 15 degrees when
stopping from 10 kph.

The device chassis should stay
level throughout its use. The
purpose is to create a platform that
stays level so that hardware such as
a camera can be attached to the
chassis and kept level.

6,7
The batteries will be rechargeable and able to power
the device for at least 10 minutes from a fully
charged state. The target longevity of the batteries
will be 20 minutes.

The device will have the battery
capacity to put on short
demonstration shows.

6
The device will be equipped with a failsafe unit in
case of battery loss, frequency disturbance or if the
receiver becomes out of range

The reason for adding a failsafe
unit to the device is for safety. The
device will shut down if an error
occurs.

22

3.	 Milestone	 3:	 Concept	 Generation	 and	 Selection	

This milestone consisted of two subcategories, the first being our concept generation and

the second being our concept scoring matrix. The concept generation sub category is an essential

step in considering a multitude of different design options that are realistic as well as unrealistic.

It is here that creativity is allowed to flow. After obtaining a number of design alternatives from

the morphological chart, there needs to be an organizational process that rates the different

concepts that have been previously established. A concept scoring matrix will be used to do this.

This chart will allow an outside perspective of how each concept compares to each other and will

determine an ideal model to prototype. This milestone is critical so that no design option will be

left out. Finally this process will determine what ideas will advance onto the next step in the

design process and which designs will not.

23

3.1	 Concept	 Generation	

The concept generation is a key component in the design process because it gives the

opportunity to have a multitude of different designs that capitalize on a variety of different

shapes, materials, fasteners and devices. Two morphological charts were used to organize all of

the different ideas. One chart was the hardware aspects of the design and the other being the

materials aspect of design. Different design concepts can be created by mixing and matching the

different design features. By creating these charts it was ensured that no design would be left

unaccounted for and all possible designs would be analyzed.

Hardware Morphological Chart

 Our first prospective design is highlighted in the hardware morphological chart as the

green design. This design will be driven by wheel to wheel contact powered by a DC motor. It

will be controlled by the Arduino Uno Controller in order to handle the mechanical and electrical

inputs and outputs of the control system. This design uses a counterweight slider and integrated

leveling sensors to help the chassis stay level. This concept will be cost effective, lightweight,

and capable of controlling the “sloshing” movement of the chassis.

 The second design is highlighted in blue. This model will have a chain drive train and be

powered by a brushless DC motor. The MultiWii Pro controller will be used for the controls

along with an infrared laser to measure the leveling. These will be used in correspondence with

a counterweight slider for static leveling and a rotating flywheel for dynamic leveling.

 The third design is highlighted in purple. This design will have a belt drive train powered

by an AC motor. The static and dynamic leveling will be controlled by an FPGA controller.

Clips will be used to mount the hardware to the chassis. A high strength belt will be used in

unison with an AC electric motor to apply mechanical energy for the device. The control system

will be handled by a Field Programmable Gate Array (FPGA) and stand alone sensors which will

interact with the control algorithm programmed on the FPGA.

Drive	 train Chain Gears Wheel	 to	 Wheel Direct Belt
Electric	 Motor Brushless DC AC -‐-‐-‐ -‐-‐-‐ 1
Controls Arduino FPGA PSoC MultiWii	 Pro -‐-‐-‐ 2
Dynamic	 Leveling Counterweight	 Slider Pendulum Rotating	 Flywheel -‐-‐-‐ -‐-‐-‐ 3
Static	 Leveling Counterweight	 Slider Pendulum -‐-‐-‐ -‐-‐-‐ -‐-‐-‐ 4
Leveling	 (Measurement) Integrated	 Laser Separate -‐-‐-‐ -‐-‐-‐

24

 The fourth design is highlighted in yellow. This design will be driven by direct drive

train, meaning straight from the shaft of the DC motor to the wheel. The device will be driven

from a direct connection between a DC motor and the axel. A Programmable System on Chip

(PSoC) will be used with a laser sensor to control the leveling as well as control of the design.

The leveling system will be a rotating flywheel for the dynamic leveling.

Materials Morphological Chart

 Our first prospective design for the materials morphological chart is highlighted in

orange. The housing of the diwheel will be made from a plastic mold that will be in the shape of

a triangular prism. The chassis material will be aluminum and will also be in the shape of a

triangular prism. For the hardware, it will be attached with bolts straight onto the chassis.

 The second design is shown in purple. The housing will be built out of Plexiglas and put

in a cube shape. The chassis will be a platform made of steel. The hardware will use clasps to

attach and detach from the chassis.

 The third design is highlighted in pink. This design will have a housing made of

aluminum in the shape of a cylinder. The chassis of the diwheel will be a plastic rectangular

prism that will use clips to attach external hardware to it.

 The fourth prospective design is highlighted in blue. The housing of the diwheel will be

made from carbon fiber that will be in the shape of a triangular prism. The chassis will also be

made of carbon fiber in the shape of cylinder. The hardware will be attached using suction cups.

Material	 (Housing) Aluminum Plastic	 Mold Plexiglas Carbon	 Fiber -‐-‐-‐ A
Shape	 (Housing) Cube Triangular	 Prism Cylinder Sphere B
Material	 (Chassis) Aluminum Steel Carbon	 Fiber Plastic Wood C
Shape	 (Chassis) Platform(Swing) Rectanglular	 Prism Cylinder Triangular	 Prism -‐-‐-‐ D
Hardware	 Attachment Suction	 Cup Clips Straps Clasps Bolts

25

3.2	 Concept	 Selection	

The concept scoring matrix is a chart that is used to categorize and compare the different

concept ideas that were created in the morph chart. Criteria were determined based on the

project objectives. These criteria where then assigned a weight in order of their importance in

regards to the problem definition. Each concept design was then rated in each of the different

criteria categories and then given a score. This chart will allow us to determine how each design

ranks compared to one another and whether or not the design should be developed.

Hardware Concept Scoring Matrix

The first concept scoring matrix scored the hardware of the design. Concept 1 one was

selected for development because it received the highest score in the scoring matrix. The top

criteria for the matrix include safety, cost, and leveling. According to the above chart, concept 1

received high scores in each of these important categories. The device may be used for a

military or police application so keeping the chassis level will be of high importance. Safety will

receive a high score due to the fact that it will have a plastic housing. This design received a

high score for cost because it is estimated to have a relatively low cost to prototype compared to

the other conceptual designs. Using the Arduino Uno to control the leveling gave Concept 1 a

high ranking because it is a powerful cost effective device. The mechanical aspect of leveling,

achieved with a counterweight slider, will be very efficient and require low maintenance. This

design received a high score for weight because the components used in the system are fairly

light in weight.

26

Material Concept Scoring Matrix

The second concept scoring matrix scored the material and shape of the design. Concept

A was selected for development because it received the highest score in the matrix. Weight

received a high score because the material chosen was lighter in weight. Maintenance scored

high because the material and shape chosen will not cause many breaks and failures. Mobility

scored high because the material is light making the device more mobile. The shape also yields

more mobility. Safety scored high because the material chosen does not cause any safety issues

like sharp metallic corners. Leveling scored high because the material and shape will make

leveling easier. Finally, cost scored high because the material chosen is not very expensive.

Careful analysis of this concept how it compares to the project objectives lead us to choose

concept 1A for further development.

27

4.	 Milestone	 4:	 Design	 Architecture	 and	 Detailed	 Design	

This is the last milestone deliverable and contained most of what the actual design was

going to look like. This milestone had the most detail and required the most amount of work

because precise and detailed CAD drawings needed to be drawn. Again there were two

subcategories, the first being design architecture and the second being detailed design. The

design architecture was necessary in order to visually and technically see how the

subcomponents would fit together as a final assembly. This step ensured that there would be no

physical, mechanical or electrical conflict between components. After the all of the bugs were

flushed out from the design architecture, inauguration of the detailed drawings could begin. This

is where everything came together and the first prototype could be visually referenced. CAD

parts and assemblies were created to exact dimensions; this was the first step in creating an

actual prototype.

28

4.1	 Design	 Architecture	

The design architecture is an important step to help orientate the different components of

the entire assembly. It helps in visually representing were each piece will be located and how

each piece will interact with one another. A product schematic with clusters was created in order

to break up the entire design into subcategories and document how they related to each other.

An incident interaction graph was also a requirement for the design architecture. This was a

graph that showed the different components of the product and what potential problems might

occur due to their interaction with each other. Three main components include in the design are

the Controller, the Chassis, and the Wheels. The relationship between these three components

can be seen below in the following subsection.

29

4.1.1	 Product	 Schematic	 with	 Clusters	

The Product Schematic with Clusters is a graphical represemtation of the flow of

information and energy while also representing the physical interaction. The design is broken up

into clusters that have their different function defined inside. The main clusters that we have are

the controller, the chassis and the wheels. The chassis is also further broken down into

electronics, battery, leveling, and motor. As seen below, the black lines denote the transfer of

information, and the dotted lines represent the transfer of power.

30

4.1.2	 Geometric	 Layout	

The Geometric Layout is graphical layout of what we expect our design to resemble.

Included in the Geometric Layout is a physical representation of the different clusters that are

defined in the Product Schematic with Clusters. This representation is not any final layout or

design, but just a way for the general layout and interaction to be visualized.

31

4.1.3	 Incidental	 Interaction	 Graph	

The Incidental Interaction Graph demonstrates what can go wrong for each interaction

between each cluster. Some examples of things that can go wrong are loss of signal, slipping

between the motor and wheels, and short circuiting. By brainstorming for what can go wrong, we

can attempt to plan ahead to ensure that these things do not happen.

32

4.2	 Electrical	 Design	 Architecture	

The design architecture describes the modules and how they are connected together to

form the complete system. This section describes the decomposition and functionality of each

component. The Design Architecture is important because it shows a visual of theoretical

connections. This sections describes and shows the components, how they are connected, and the

interfaces between them. The main components for the electrical side of the design architecture

are the microcontroller, wireless communication chips, Inertia Measurement Unit, and the H-

bridge. These components are described in the following sections.

4.2.1	 Level	 0	

The diwheel will be remotely controlled by the user. As the user interacts with the

controller, the diwheel will respond and move accordingly. This is the highest level of the design

and shows the basic interaction between the user and the response of the diwheel. A diagram of

this top level can be seen in Figure 4.1.1 and an overview of the functionality, inputs, and

outputs can be found in Table 4.1.1.

Figure 4.2.1: Level 0 Diwheel Functionality

Module Hardware

Inputs
-Directional data from user’s controller (forward, backward, left, right)
-Current inertial data from diwheel (leveling)

Outputs A voltage to control direction of DC motors

Functionality

Using the data received from the user’s controller and the current status
of the diwheel’s inertia, the control system will output a positive or
negative voltage to each DC motor in order to make the diwheel move as
the user instructs.

Table 4.2.1: Diwheel Functionality

User Interaction
w/ Controller

Diwheel
Movement

Hardware

33

4.2.2	 Level	 1	

Going further down into the design, level 1 describes the functionality of the hardware

and its modules. As the user interacts with the controller, the data is wireless transmitted to the

receiver on the diwheel. Once received, the data is passed to the microcontroller. The

microcontroller accepts the user’s commands as well as the Inertial Measurement Unit (IMU).

The program in the microcontroller will then determine the needed output to the electric motors

based on the current inertia of the diwheel and user’s commands. The output from the

microcontroller will be passed through an H-bridge and then to the DC motors. The diagram of

this level can be found in Figure 4.1.2.

Figure 4.2.2: Level 1 Hardware Functionality and Modules

User Interaction
w/ Controller

Wireless Transmitter

Wireless Receiver

Microcontroller

Motor Drivers

DC Motors

IMU

Diwheel
Movement

34

Wireless Receiver

Wireless Inventors Shield for Arduino

RFD21815

For the wireless receiver, we have chosen to use the Wireless Inventors Shield for

Arduino. This device can be easily attached to the Arduino and allows for up to a 500ft range.

This shield comes equipped to receive inputs from the transmitter without the need for

initialization and setup. A photograph of this module can be found in Figure 4.1.3. This module

is attached directly to the Arduino so the inputs are already configured to work. A detailed

schematic of this module can be found in the Detailed Design portion of the report.

Module Wireless Receiver
Inputs Data Transmitted from the Wireless Transmitter
Outputs Data which described the user’s commands

Functionality
The wireless receiver will receiver the data provided by the wireless
transmitter which is the user’s commands.

Table 4.2.2: Wireless Receiver Functionality

Figure 4.2.3: Wireless Inventors Shield for Arduino

http://www.kickstarter.com/projects/1608192864/open-source-wireless-inventors-shield-for-arduino
http://www.opensourcerf.com/rfd21815-wireless-inventors-shield-for-arduino.html

13715 Alton Pkwy • Irvine • CA • 92618
Tel: 949.610.0008 • www.RFdigital.com

Fast Answers: support@rfdigital.com

 1

RFDP8 © Copyright, RF Digital
10/15/2012 12:58 PM

RoHS CE • ESTI
RFD21815 FCC • IC
Approved & Certified

Shield for
Arduino
RFD21815

The inventors shield uses a wireless pipe, which is a special wireless RF module that
allows you to easily and reliably, send and receive error-free wireless data between
two or more Arduino boards. The inventors shield “Just Works”, no complicated
channels to select, to setup or initialization. Just plug it in and its ready to go. No extra
libraries are required.

It's Long Range - distances up to 500 feet.

It's Error Free - built-in forward error correction and data recovery, you only ever
receive cleaned and CRC verified data.

It's Simple To Use - anything you input, is wirelessly transmitted, then cleanly
outputted for you on the other end. Compatible with the Arduino serial and software
serial library.

It's Immune To Noise - your data inside the wireless pipe is protected from the
elements outside such as interferences like WiFi, Bluetooth, Zigbee, cordless phones,
cellular phones, all types of servo and motor noise, etc. All things which typically stop
your wireless project in its tracks, are no longer an issue.

RFD21815 Shield for Arduino

35

Wireless Transmitter

Wireless RF USB Dongle

RFD21807

For the wireless transmitter, we have chosen to use the Wireless RF USB Dongle. This

device is created by the same company as the Wireless Inventors Shield and will be easily

interfaced. This USB dongle will accept user serial input data from the HyperTerminal on the

PC. The device also has a range of 500ft. A photograph of this module can be found in Figure

4.1.4. A detailed schematic of the wireless transmitting chip can be found in the Detailed Design

portion of the report.

Module Wireless Transmitter
Inputs Serial Data From the Controller (PC)
Outputs Data Transmission

Functionality
The wireless transmitter will take the User’s Control entered from the
PC, and transmit the data wirelessly to the receiver.

Table 4.2.3: Wireless Transmitter Functionality

Figure 4.2.4: Wireless RF USB Dongle

http://www.kickstarter.com/projects/1608192864/open-source-wireless-inventors-shield-for-arduino
http://www.opensourcerf.com/rfd21815-wireless-inventors-shield-for-arduino.html

36

Microcontroller

Arduino Uno R3

DEV-11021

For the microcontroller, we have selected the Arduino Uno as our component to handle

all calculations and data flow. The Arduino Uno is an affordable yet powerful microcontroller

that is easy to program and interface with the other electrical components. We will be using the

Arduino to handle all leveling related calculations as well as control of the DC motors.

Module Microcontroller

Inputs
User input from wireless receiver
Inertia data from IMU sensor

Outputs Voltages for controlling Motor Drivers

Functionality

The microcontroller will gather the input from the user as well as the
feedback from the IMU sensor and determine what the needed voltage
for the DC motors will be.

Table 4.2.4: Microcontroller Functionality

Figure 4.2.5: Arduino Uno R3 Front

http://www.arduino.cc/en/Main/arduinoBoardUno

37

Figure 4.2.6: Arduino Uno Block Diagram

http://www.sciencedirect.com/science/article/pii/S0165027012003846

Name Direction Description
Reset Input Resets Microcontroller When LOW
AREF Output Analog Input Reference Voltage
IOREF Output Input/Output Reference Voltage
3.3V Output 3.3V Output
5V Output 5V Output

GND Input Common Ground
GND Input Common Ground
GND Input Common Ground
A0 Input Analog Input 0
A1 Input Analog Input 1
A2 Input Analog Input 2
A3 Input Analog Input 3
A4 Input Analog Input 4
A5 Input Analog Input 5

D0 (RX) Either Digital Pin 0 (Receive serial data)
D1 (TX) Either Digital Pin 1 (Transmit serial data)

D2 Either Digital Pin 2
D3 (PWM) Either Digital Pin 3

D4 Either Digital Pin 4
D5 (PWM) Either Digital Pin 5
D6 (PWM) Either Digital Pin 6

D7 Either Digital Pin 7
D8 Either Digital Pin 8
D9 Either Digital Pin 9

D10 (PWM) Either Digital Pin 10
D11 (PWM) Either Digital Pin 11

D12 Either Digital Pin 12
D13 Either Digital Pin 13

Table 4.2.5: Arduino Uno Input/Output

38

Motor Driver (For 250W Motors)

Pololu High-Power Motor Driver 24v23 CS

Pololu Item #1456

A motor driver is needed to control the speed and direction of the DC motors. We chose

the Pololu High-Power Motor Driver because of its capability to handle high power. The driver

also contains a PWM signal input which allows the control of the motor speed. The motor driver

has a high power side and a lower power digital side. The digital side uses the output from the

Arduino and the power side handles the high power from the batteries to the motors.

Module Motor Driver (250W Motors)

Inputs

PWM signal from Microcontroller
Direction signal from Microcontroller
24V From Batteries

Outputs Voltage to control speed and direction of DC motors

Functionality

The motor driver will take in the output voltage of the microcontroller
and output the correct polarity to the DC motors. Controls the DC motors
to go forwards or backwards. The PWM signal controls the average
voltage allowed to pass through to the motors which controls the speed.

Table 4.2.6: Motor Driver (23A) Functionality

Figure 4.2.7: Pololu High-Power Motor Driver

http://www.pololu.com/catalog/product/1456

39

Figure 4.2.8: Pololu High-Power Motor Driver Pins

http://www.pololu.com/catalog/product/1456

Table 4.2.7: Pololu High-Power Motor Driver Pin Descriptions

http://www.pololu.com/catalog/product/1456

40

Motor Driver (For Metal Gear Motor)

10A DC Motor Driver Arduino Shield

RB-Cyt-116

Another motor driver is needed to control the speed and direction of the small linear

motor. We chose the 10A DC Motor Driver Arduino Shield because it operated in the range we

require and fit into our limited space. The shield connect directly to the Arduino and also the

Wireless Inventors shield. A couple of the pins are designated for controlling the speed and

direction of the small metal gear DC motor.

Module Motor Driver (W Motors)

Inputs

PWM signal from Microcontroller
Direction signal from Microcontroller
24V From Batteries

Outputs Voltage to control speed and direction of DC motors

Functionality

The motor driver will take in the output voltage of the microcontroller
and output the correct polarity to the DC motors. Controls the DC motors
to go forwards or backwards. The PWM signal controls the average
voltage allowed to pass through to the motors which controls the speed.

Table 4.2.8: Motor Driver (metal gear motor) Functionality

Figure 4.2.9: 10A DC Motor Driver Arduino Shield

http://www.robotshop.com/10a-dc-motor-driver-arduino-shield-2.html

41

Inertial Measurement Unit

Triple Axis Accelerometer & Gyroscope Breakout Board

MPU-6050

An Inertial Measurement Unit is a device that will gather data about the inertia of the IC

using the on board accelerometers and gyroscopes. Our diwheel will be using the Triple Axis

Accelerometer & Gyro in order to measure the inertia of the product while in motion. This

component is key in keeping the device level as it will be the source of feedback to the

microcontroller. Because the IC is very small, we will be using the breakout board in order to

make accessing the ports easier.

Module Inertial Measurement Unit
Inputs Inertial forces acting on device
Outputs Data describing current status of the diwheel’s inertia

Functionality
The accelerometers and gyroscopes inside the IMU will provide data
describing the angle, pitch, and momentum of the device.

Table 4.2.9: IMU Functionality

Figure 4.2.10: MPU-6050 IC Block Diagram

42

Name Direction Description
VCC Input Power Supply Voltage and Digital I/O supply voltage

 GND Input Common Ground
INT Output Interrupt digital output (totem pole or open-drain)

FSYNC Input Frame synchronization digital input. Connect to GND if unused.
SCI Input I2C serial clock (SCL); SPI serial clock (SCLK)
SDA Output I2C serial data
VIO Input SPI chip select (0=SPI mode) Digital I/O supply voltage

CLKIN Input Optional external reference clock input. Connect to GND if unused.
AUX_SCL Input I2C Master Serial Clock, for connecting to external sensors
AUX_SDA Input I2C Master Serial Data, for connecting to external sensors

Table 4.2.10: IMU Breakout Board Inputs/Outputs

Table 4.2.11: IMU Breakout Board Absolute Maximum Ratings

https://www.sparkfun.com/products/11028
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Components/General%20IC/PS-MPU-6000A.pdf
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Components/General%20IC/PS-MPU-6000A.pdf

43

4.3	 Mechanical	 Detailed	 Design	

The detailed design portion of this project could be one of the most important pieces to

the puzzle. This section takes everything that has been done so far and compiles everything that

has been documented into a first prototype design. It will be a visual model off what the actual

prototype is going to look like.

This model is the complete design for the DiWheel. It includes all aspects of the concept

that was chosen from the morphological chart. That design was wheel to wheel contact,

triangular chassis and housing, and a counterweight slider for dynamic and static leveling.

Full 3D Solidworks model.

44

Drive Train

This is a focused model on the drive train for the DiWheel. This is an essential subsystem

that will provide the DiWheel with mechanical motion. The drive train includes the DC motor,

drive gear, axel, bearings, and drive wheel.

 Drive Train Drive Train on Chassis

The components of the drive train model shown above were selected after first finding

what characteristics had to be met in order to meet our specifications as per Section 2.3. Below,

we define the values determined in the specifications and calculated the power required from the

motor. The power calculation values were derived from unit conversions, power output at

different motor speeds, and ratios between wheel sizes and gear sizes. Our data and calculations

are shown below.

45

Power Calculations for the Drive Motors:

top	 velocity	 (m/s) 7.3000
time	 to	 full	 speed	 (s) 3.0000
top	 acceleration	 (m/s^2) 2.4333
mass	 (kg) 20.0000
force	 (N) 48.6667
distance	 to	 top	 speed	 (m) 10.9500
power	 (W) 177.6333
power	 (hp) 0.2382
lin	 acc 2.4333
ang	 acc 0.0618

wheel	 diameter	 (m) 0.6096
drive	 wheel	 diameter	 (m) 0.1016
wheel	 circumfrance	 (m) 1.9151
drive	 wheel	 circumfrance	 (m) 0.3192
inside	 wheel	 diameter	 (m) 0.5080
inside	 wheel	 circumfrance	 (m) 1.5959

outter	 wheel	 to	 inner	 wheel 1.2000

wheel	 rpm 228.7069

inside	 wheel	 to	 drive	 wheel	
ratio 5.0000

drive	 wheel	 rpm 1143.5345

wheel	 torque	 (N*m) 14.8336

drive	 wheel	 torque	 (N*m) 2.9667
in*lb 26.2576

motor	 drive	 ratio 2.0000
motor	 rpm 2287.0691

each	 drive	 wheel	 (N*m) 1.4834

46

Dynamic and Static Leveling: Counter Weight

The model seen below is of the counter weight slider mechanism that will provide the

Diwheel with static and dynamic leveling. The slider consists of two guide rails, the

counterweight, and a drive motor. This motor is in charge of rapidly moving the weight along the

rails. As the weight slides forward and back, it creates a torque on the chassis to counteract the

torque created by the drive motor.

 Leveling Leveling on Chassis

The components of the counter weight slider model shown above were selected after first

finding what characteristics had to be met in order to meet our specifications as per Section 2.3.

Below, we define the values determined in the specifications and calculated the displacement

needed by the slider to counter balance the torque of the motor. There are three dynamic

equations defining our diwheel that were adapted from the Edwards Diwheel Project, Appendix

C. The first equation is the sum of the torques on the chassis about the wheel axis. The second

equation is the sum of the torques on the wheels about the wheel axis. The third equation is the

sum of the torques about the vertical axis. The variables are defined in Appendix C.

47

Defining and solving Dynamic Equations:

Initial Equations

(1) 𝐽!!!𝜃 − 𝑎! cos 𝜃 𝜙 − sin 𝜃 cos 𝜃 𝑍Ω! + 𝑎! sin 𝜃 + 2𝑏 𝜃 − 𝜙 −𝑚!𝑔 𝑙 cos 𝜃 +
𝑟 sin 𝜃 + 2𝑇! = 0

(2) 2𝐽!!! +

!!!!

!
𝜙 − 𝑎! cos 𝜃 𝜃 + 𝑎! sin 𝜃 𝜃! + 2𝑏!𝜙 + 2𝑏 𝜙 − 𝜃 − 2𝑇! = 0

(3) !!!!

!!
+ 𝐽!! Ω+ 2𝛼 sin 𝜃 cos 𝜃 𝑍𝜃Ω+ !!!

!!
+ !!

!!
− !

!!,!

!!!!!
!!

𝑉!! +
!!!

!!!!

!!
Ω = 0

For our detailed design, we are only going to focus on the first equation, which has to do

with the sum of the torques on the chassis about the wheel axis. We will ignore friction in the

system and look at a case where there is not turning about the vertical axis. This will allow the

equation to be simplified. Once simplified the displacement of the slider can be solved for.

Simplified

(1)

𝐽!!!𝜃 − 𝑎! cos 𝜃 𝜙 − sin 𝜃 cos 𝜃 𝑍Ω! + 𝑎! sin 𝜃 + 2𝑏 𝜃 − 𝜙 −𝑚!𝑔 𝑙 cos 𝜃 +
𝑟 sin 𝜃 + 2𝑇! = 0

−𝑚!𝑒𝑅 cos 𝜃 𝜙 +𝑚!𝑒𝑔 sin 𝜃 −𝑚!𝑔 𝑙 cos 𝜃 + 𝑟 sin 𝜃 + 2𝑇! = 0

𝑚!𝑔𝑙 cos 𝜃 = 2𝑇! −𝑚!𝑒𝑅 cos 𝜃 𝜙 −𝑚!𝑒𝑔 sin 𝜃 −𝑚!𝑔𝑟 sin 𝜃

𝑙 =
2𝑇! −𝑚!𝑒𝑅 cos 𝜃 𝜙 −𝑚!𝑒𝑔 sin 𝜃 −𝑚!𝑔𝑟 sin 𝜃

𝑚!𝑔 cos 𝜃

After we solved for the displacement of the counter weight slider, we simplified again for

two different cases. The first case is the displacement needed at constant maximum acceleration

and the second is the displacement needed at constant maximum velocity. This is the

displacement that the slider needs to move to keep the chassis at a given angle during maximum

acceleration.

Displacement at Constant Max Acceleration

𝑙!"" =
2𝑇!" −𝑚!𝑒𝑅 cos 𝜃 𝜙 −𝑚!𝑒𝑔 sin 𝜃 −𝑚!𝑔𝑟 sin 𝜃

𝑚!𝑔 cos 𝜃

48

We then simplified the equation for the displacement needed at constant velocity. For this case,

we set the angle of the chassis to zero simplifying to the following equation.

Displacement at Constant Max Velocity

𝑙!"# =
2𝑇!"
𝑚!𝑔

Below we define the value of the variables used and show our calculated values for the

displacement of the sliding counter weight.

Defining Variables and Solving for Displacement of Slider:

Term	 Variable	 Value	 Units	
Mass	 of	 body	 m_b	 30.000	 kg	
Radius	 of	 Wheels	 R	 0.305	 m	
Radius	 of	 Mass	 e	 0.127	 m	
Max	 Pitch	 Allowed	 ϴ	 2.750	 deg	
Max	 Pitch	 Allowed	 ϴ	 0.048	 rad	
Max	 Torque	 T_m	 7.480	 Nm	
Max	 Displacement	 of	
Slider	 l_max	 0.110	 m	
Mass	 of	 Slider	 m_s	 1.000	 kg	
Max	 Linear	 Acceleration	 a	 1.217	 m/s^2	
Max	 Angular	
Acceleration	

	

3.992	 rad/s^2	
Radius	 of	 Slider	 r	 0.095	 m	
	 Intermediate	 Terms	 	 Variable	 	 Value	 Units	

Gravitational	 constant	
a_g	 =	
m_b*e*g	 37.376	 	 	

Cross	 Coupling	 term	
a_x	 =	
m_b*e*R	 1.161	 	 	

	 Final	 Calculations	 Variable	 Value	 Units	
Displacement	 of	 slider	 at	
max	 acceleration,	
1.2166	 m/s^2	 l_acc	 0.103	 m	
Displacement	 of	 slider	 at	
constant	 velocity,	 7.3	
m/s	 l_vel	 0.022	 m	

49

Hardware Table/Electrical Components

Hardware Table with Electrical Components

The hardware table was then modeled and will be able to hold all of the

electrical components and the select user hardware. The electrical components will

include the breadboard, Arduino Uno controller set up, and 9V battery. This part

will be comprised of four legs and one platform that will all be printed on the 3D

printer.

50

Hardware Table with Electrical Components on Chassis

Chassis and Guide Wheel

The chassis is shown modeled below. It is comprised of aluminum angle

iron, plate, and bar and will form a triangular prism shape. At each of the three

corners there will be a guide wheel to keep the bike wheel in line and in contact

with the drive wheel. As the diwheel is used the guide wheels will begin to wear

causing vibrations in the system so a tensioner will be added to the top guide wheel

to account for this wearing.

51

Chassis Tensioner

52

Full Exploded View

Shown below is the full Solidworks model of the DiWheel from different

views. You can see how each subsystem interacts with each other.

Isometric View Side View

Exploded View

53

4.4	 Electrical	 Detailed	 Design	

Detailed design is one of the most important aspects of the design process as it describes

how the design will be created. This section is divided up into two sections; one for hardware

design, and the other for software design. The hardware design section describes some of the

physical connections that will be made between components. The hardware section will also give

an overview of the electrical components and how each fits into the design. The software portion

describes the logic flow of the programming and gives detail to what algorithms will be

implemented.

54

4.4.1	 Hardware	 Design	

 This project will not require extensive designing of hardware, but will utilize various

components together. The hardware will revolve around the Arduino Microcontroller as it will be

handling all inputs and outputs. The various components will be brought together to create the

functionality the diwheel requires. This section will describe some of the connections that will be

made between components and how they will interact with each other.

The Wireless Inventors Shield for Arduino is directly attached to the Arduino Uno’s I/O

ports. The shield will utilize some of the Arduino’s pins while leaving the others unattached.

Because the shield sits on top of the Arduino itself, headers are used to connect and extend the

I/O pins of the Arduino. The circuit schematic of this shield in relation to the Arduino’s I/O pins

can be found in Figure 4.4.1.

55

13715 A

lton Pkw
y • Irvine • C

A
 • 92618

Tel: 949.610.0008 • w
w

w
.R

Fdigital.com

Fast A
nsw

ers: support@
rfdigital.com

4

R
FD

P8
©

 C
opyright, R

F D
igital

10/15/2012 12:58 PM

 R
oH

S C
E • ESTI

R
FD

21815 FC
C

 • IC

A
pproved &

 C
ertified

Shield for
A

rduino
R

FD
21815

Schem
atics

Figure 4.4.1: Wireless Inventors Shield for Arduino Circuit Schematic

http://www.opensourcerf.com/rfd21815/RFD21815%20wireless%20inventors%20shield%20manual.pdf

56

The Wireless RF USB Dongle utilizes the RFD21733 transmitter within the hardware.

The circuit schematic for the RFD21733 transmitter can be found in Figure 4.4.2.

Figure 4.4.2: RFD21733 Transmitter Circuit Schematic

http://www.opensourcerf.com/common/RFDP8.RF.Modules.Manual.pdf

57

Our design will utilize the breakout board for the IMU sensor. This breakout board will

allow us to easily access the needed terminals in our design. The circuit diagram for this

interface can be found below in Figure 4.4.3.

Figure 4.4.3: MPU-6050 Breakout Board Circuit Diagram

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/IMU/MPU-6050_Breakout%20V11.pdf

���
��

���
��

	
���
��

����
�

������
��

�����
��

���
��

�����
�

������
�

�
��

��
��

���
�

�����
�

�

�

�

�

�

�

�

�

�

��

58

An overall picture of the hardware used and connections can be found below in

Figure 4.4.4. The completed design will also contain certain safety precautions such as fuses and

switched to turn the system on and off easily. The complete circuit diagram for the hardware can

be found in Figure 4.4.5. Table 4.4.1 lists the pins and connections of the digital side of the

design.

Figure 4.4.4: Abstract Electrical Connections

P
C

Wireless RF
Dongle

(Transmitter)

Wireless
Inventors
Shield for
Arduino

IMU
MPU6050
Breakout

Arduino
Uno

Motor
Drivers 10A

Motor
Driver

Arduino
Shield

59

Figure 4.4.5: Diwheel Circuit Diagram

Arduino Pin Connection Wire Color Function
0 Wireless Shield No Wire (Header) RX (Receive Serial Data)
1 Wireless Shield No Wire (Header) TX (Transmit Serial Data)
2 LM EncA Yellow Encoder output from LM

~3 LM PWM No Wire (Header/JD3) PWM Signal of LM
4 - - -

~5 LM EncB White Encoder Output From LM
~6 M1 Direction Green Controls direction of motor
7 M2 Direction Green Controls direction of motor
8 M1 RESET White Resets motor driver 1
9 M2 RESET White Resets motor driver 2

~10 M1 PWMH Yellow PWM Signal of M1
~11 M2 PWMH Yellow PWM Signal of M2
12 LM Direction No Wire(Header/JD12) Controls direction of motor
13 - - -

Table 4.4.1: Diwheel System Digital Side Pin Mapping
- : No Connection
~ : Indicates a PWM capable pin
LM: Linear Motor
M1: Motor 1 (Left Motor)
M2: Motor 2 (Right Motor)

60

4.4.2	 Software	 Design	

 The diwheel’s chassis is required to be level in our design. In order to keep the chassis

level, a control algorithm is needed. This algorithm will monitor the current movement and

adjust the chassis accordingly. The microcontroller will house a program that will implement a

PID controller to accomplish this. The basic structure of this algorithm can be found below in

Figure 4.4.6. When the device is powered on, the system will first initialize all inputs to the

default/starting values. The control loop will then start and read the data from the IMU sensor as

well as the user’s commands. Once the data is read, it will be processed and the output voltage

for the DC motors will be adjusted to correct any sloshing that will occur. This will keep the

chassis level.

Figure 4.4.6: Control Loop

Initialize

Start

Read Sensor
Data

Process Sensor
Data/Adjust Output

Adjust Motor
Voltages

61

A PID Controller is the most common feedback controller and will be the most effective

for our diwheel’s leveling design. A PID controller feeds back information to be taken away

from the desired state. When the diwheel accelerates or decelerates, the chassis will want to

rotate forward and backward. The PID controller will take the data from the IMU sensor and use

it to create the error signal. When the diwheel goes past the desired degrees of freedom, feedback

will be send to the input to correct the “slosh” of the device. A typical feedback loop can be

found in Figure 4.4.7. Our PID controller will be implemented in the software on the Arduino

Microcontroller.

Figure 4.4.7: PID Controller

62

4.4.3	 Diwheel	 Controls	

The diwheel will be controlled by the user through serial communication. This can be
done in either HyperTerminal on Windows, or the Arduino’s Serial Monitor tool on all operating
systems. The device is designed to operate at a baud rate of 9600. The program has been written
with specific keys mapped for specific functions. The commands/controls can be found in Table
4.4.2.

	 Key	 Command	
w	 Forward	
a	 Left	
s	 Backward	
d	 Right	
q	 Spin	 counter-‐clockwise	
e	 Spin	 clockwise	
x	 Stop	 (Coast	 to	 a	 stop	 safely)	
v	 Stop	 (Emergency	 Stop	 –	 Brake)	
g	 Turn	 on	 system	 (On)	
r	 Reset	 system	 (Off)	

1,	 2,	 3,	 4,	 5,	 6,	 7,	 8,	 9,	 0	 Speed	 Control	 (Low	 to	 High)	
Table 4.4.2: Diwheel Controls

 The diwheel is controlled via the onboard program within the Arduino. This code is
written in the Arduino language which is C based programming language. The program has been
written with several safety precautions in mind such as protection against changing a motor’s
direction too suddenly and ramping the speed down before completely stopping. The program
(“sketch”) can be found in Appendix C.

63

5.	 Milestone	 5:	 Prototyping	

 Before the complete system could be assembled and tested, prototyping had to be

completed. Prototyping involved establishing a basis for which the final product would be built

upon. Each component was prototyped and then the system was prototyped. Components were

assembled, constructed, wired, soldered, and built in order to meet the design specifications.

 	

64

5.1	 Mechanical	 Prototyping	

 Mechanical prototyping consisted of the manufacturing process for all the mechanical
components. In this section, each component is listed and a description of how they were
manufactured, why that design was chosedn, and a picture of the finished product.

65

Component: Chassis

Functionality: Component Mount
The chassis is where the motors, batteries, leveling components and electrical

components are mounted and where the axels to the guide wheels and drive train are attached.

Angle iron was cut and welded at the corners in order to build the frame of chassis platform.

Once the frame was completed, the aluminum plate was cut to fit.

 Figure 1: Cutting Angle Iron Figure 2: Welding Steel Frame

 Figure 3: Corner Weld Figure 4: Finished Frame

Figure 5: Cutting Aluminum Plate

66

Component: Tensioner

Functionality: Keeping Top Guide Wheel Axel in Tension
The tensioner was made out of 1in x 1in steel stock to be 3 inches long. It was cut to

length on the band saw and then a ½ in slot was milled out using the manual mill.

Figure 6: Milled Tensioner

67

Component: A-Frame

Functionality: Providing Structure For Top Guide Axel
Four lengths of 1in x 1in x 1/16in angle iron were cut to create the four arms of the A-

frame. Two 4in x 4in right triangles were cut from 1/16in thick sheet to later be welded to

support the A-frame from leaning.

Figure 7: A-Frame

68

Component: Guide Wheels

Functionality: Wheel Attachment
There are a total of six guide wheels, three on each wheel. Grooves in the middle of hard

plastic cylinders were milled using the lathe. With all six wheels milled, the three axels for them

were made. Using ½ in diameter steel rod, three rods were cut to 24 in each. Each end of the rod

was taken down using the lathe to be 5/8 in diameter to create a shoulder for the guide wheels to

sit upon. The ends of the rods were threaded and a nut was used to secure the guide wheels to the

rod.

 Figure 8: Lathe Groove in Guide Wheel Figure 9: Axel Shoulder and Thread

 Figure 10: Lathing Guide Wheel Axels Figure 11: Guide Wheel

69

Component: Drive Plate

Functionality: Plate to Attach Drive Axel System to
A plate was cut from 1/8in x 3in sheet to the same width as the frame. This plate is where

the drive axel assembly will be mounted to and this plate will be welded to the bottom of the

frame. This plate will allow the drive axel to be mounted to the frame and not the aluminum

plate.

Figure 12 & 13: Drive Plate

70

Component: Supporting Strap

Functionality: Provide Support for the Middle of the Drive Plate
The supporting strap was cut from a 1in x 1/8in strap at a length that fit tight between the

front and back of the frame. This strap was welded on to the frame and then welded to the drive

plate to support the middle of drive plate. This support was necessary so that the drive plate did

not deflect too much as the drive wheel axel was tensioned.

Figure 14 & 15: Supporting Strap

71

Component: Leveling Weight

Functionality: Leveling

 The sliding counter weight was created from steel. It was cut five inches in length from a

1in x 1in stock and two 5/8 in holes were drilled; holes were drilled beginning with a 1/4 bit,

moving to a 1/2 bit, and then finishing with a 5/8 bit. Attaching the sliding weight to two bars

was done by press fitting two brass sleeve bearings into the drilled holes. These bearings were

slightly too large so to make sure they would fit properly, the outside was sanded down before

being press fitted in. Lastly, the motor mount for the leveling motor was machined.

 Figure 16: Cutting 5” Weight Figure 17: Drilling with 1/4 Bit

 Figure 18: Drilling with 5/8 Bit Figure 19: Finished Weight with Bearings

72

	 	 	
 Figure 20: Weight on Rails Figure 21: Leveling Motor Mount

73

Component: Leveling Rod Mounts

Functionality: Hold Leveling Rods in Place
The Leveling Rod Mounts are made from 1in x 1/8in strap. They have a ninety degree

bend at the bottom for a bolt to secure it to the aluminum plate. The vertical portion then has a

slight deviation to make them slightly wider to fit the leveling rods. At the top a small steel

cylinder was welded to hold the leveling rods in place.

Figure 22: Leveling System Rod Mounts

74

Component: Leveling Idle Axel

Functionality: Hold Idle Gear to Leveling Rod Mounts
This axel was made from a 3/8 steel rod. The process of making the part included drilling

and machining.	
	

	
Figure 23: Leveling Idle Axel

75

Component: Leveling Chain Tensioner

Functionality: Tension Chain and Maintain Contact with Leveling Motor

The leveling chain tensioner was made from 3/4in PVC pipe held down by two 3/4in
conduit clamps. This tensioner was placed close to the leveling motor so that the chain would
maintain a high angle of contact on the gear on the motor. The tension can be adjusted by
tightening the bolts.	
	

Figure 24: Leveling System Chain Tensioner

76

Component: Hardware Table

Functionality: Table to Mount the Electrical and External Hardware
 A tabling using plexiglass and steel was built. The legs were made by bending steel straps
at 90 degree angles on either end. Holes were drilled through the plexiglass and legs in order to
bolt the two together. Also, holes in the plate and bottom of the table legs were drilled to be
bolted.

	
Figure 25: CAD of Hardware Table

77

Systems Prototyping: Frame and Guide Wheels
 The guide wheel axels were welded to the side of the frame of the chassis. This design
will help keep everything aligned as well as provide structural support for the chassis. The next
step was to weld each tensioner to an arm of the A-Frame. The arms of the A-frame were then
placed on the frame and tack welded on. They were checked with a right angle to ensure that
they were vertical. Next the support triangles were welded on the A-frame arms and the frame to
keep the arms vertical. The drive axel assembly was then placed on the drive plate and the holes
were drilled to place the bolts. The plate was then in the middle below the left and right angles.
The support strap was then placed between the front and back angles of the frame and welded to
the frame and drive plate.	 	
	

Figure 26: Guide wheels axels welded to frame

 Figure 27: CAD of Chassis Figure 28: Support Straps

78

Systems Prototyping: Drive Train Assembly
 The location of the motors on the frame was determined and they were bolted down.
Next, the location of the drive axel was determined and the bearings were bolted to the frame.
Once these two key components were in place, the chains were attached via gears. In order to
properly tension the chains, adjustments to the bearings were made by tightening/loosening bolts
and adding rubber bike tubes as “spacers”. Securing the two batteries was done by strapping
them to the plate.

 Figure 29: Chain and Gears Figure 30: Battery Strap

Figure 31: Bearings with Adjustments

79

Systems Prototyping: Linear Leveling Assembly
 The linear leveling system required that the four rod mounts line up properly so that the
mass would be able to slide affectively. All four mounts were bolted to the middle of the frame
of the chassis. Next, the leveling drive train, consisting of the motor, gear, chain, and chain
tensioner, was assembled.

Figure 32: Linear Leveling Assembly

Figure 33: Linear Motor and Chain Tensioner

	

80

Full Mechanical Prototype
 Once the sub systems of prototyping were complete, the full mechanical prototype was

assembled. Everything was bolted down prepared so that the electrical portion could be easily

integrated.

Figure 34: Full Mechanical Prototype

 	

81

5.2	 Electrical	 Prototyping	

 Electrical prototyping involved setting up the electrical components. This involved
syncing the wireless communications, soldering wires, wiring the circuits, and mapping the
digital pins. The Arduino code also had to be written during this time in order to set up certain
components.

Component: Wireless Inventors Shield/Dongle

Functionality: Wireless Communication

 The first step in the electrical portion of prototyping was to establish the wireless

communication of the device. In order to do this, the Wireless Inventors Shield needed to be

synced with the Wireless USB Dongle. The Wireless Inventors Shield was attached to the

Arduino for power, and the Dongle was plugged into a laptop. Each device has a “learn” button

which allows the two wireless chips to be able to communication with each as well as ignore all

other signals. Once paired, the communication had to be tested. Using HyperTerminal on the

laptop, serial data was sent over wirelessly to the Arduino. The test was successful and was

shown by the RX LED on the Arduino lighting up when a character was received.

82

83

Component: H-Bridge Motor Driver 1A

Functionality: Motor Control

 The next step in the electrical prototyping was to learn and set up the H-Bridge. The H-

bridge is what governs the motors as well as the power source. The H-Bridge IC chip was placed

on a breadboard and wired according based on the datasheet. Because the motors had not yet

arrived when this prototyping began, LEDs were used to simulate the direction of the motors and

test the logic of the program. Two different colored LEDs were used and connected to the H-

Bridge in order to simulate how the motors would be set up.

84

85

Component: 24V DC Motor

Functionality: Drives the Drive Wheels for Movement

 Once the motors and batteries were received, the next part in the prototyping process was

to swap out the LEDs in the preliminary testing circuit, with the actual DC motors. Prototyping

was first done on one motor with a single 12V battery. Once this was successful, the second

motor was added. However, when the second motor was added, there was not enough power to

drive both motors. In order to add power, a second 12V battery was added in series to obtain

24V. This was too much power for what the H-Bridge was designed for and the IC chip failed.

As a result, more research was done on obtaining a motor driver suited for high power

applications.

86

87

88

Component: Pololu High-Power Motor Driver 24v23 CS

Functionality: Motor Control

 After the failure of the IC H-Bridge, this motor driver was selected to take its place. Two

drivers are required because each can support only one motor. Prototyping began with soldering

on the capacitors and headers to the board. Wires were then soldered onto the power side of the

board for the connection to the batteries and motors. Before soldering was completed, the motor

driver was first tested in the lab. Once the drivers had been successfully tested, the final

soldering was done and the component was brought into the completed system.

89

Component: 10A DC Motor Driver Arduino Shield

Functionality: Linear Motor Control

 After the main motor drivers were ready, the next step in prototyping was to bring the

linear motor driver online. This motor driver is another shield for the Arduino and is connected

between the Wireless Inventors Shield and the Arduino Uno. The driver had jumper pins which

make connections to specified I/O pins for use by the Arduino. The pins were chosen based on

which Arduino pins were available and fit into the overall design. Once the pin assignments had

been established, the motor driver was placed into the system for testing.

90

Component: Triple Axis Accelerometer & Gyro Breakout-MPU-6050

Functionality: Leveling Feedback

 Lastly, the accelerometer and gyroscope which is used in providing feedback to the

system was worked on. The component sends values corresponding to the chip’s inertial data

back to the Arduino for use in computations. Prototyping for this component simply involved

soldering on the pins and wiring it to the Arduino.

91

Electrical System Integration Prototyping

 After each component had been through prototyping, system integration began. System

prototyping involved bringing all of the components together to form one complete system. This

was the most lengthy prototyping process and was started after the main parts of the diwheel had

been assembled. First, system integration prototyping began with making the connections

between each component. The Arduino and its two shields were wired to the breadboard. The

Motor drivers were wired to the breadboard as well as to the DC motors and batteries. Fuses and

switches were also implemented in the final design which were wired in during system

integration prototyping.

92

After some initial testing, the final system needed to be finalized. Once the geometries of

the locations of the batteries and motors could observed, wire could be cut down to an

appropriate length to clean up the system. During this time, the switched were added and the

connections were soldered in to keep everything secure and stable. Green LEDs were also added

to the design to increase the aesthetic appeal and user friendliness. Once everything was secured

and finalized, more system testing began.

93

 Software prototyping was done in parallel with the hardware prototyping. As certain

hardware connections were made, the appropriate changes were implemented into the software.

Software prototyping continued through into testing as well. When there was an error or

undesired functionality, the software had to be updated. One issue we ran into during system

prototyping involved the Arduino Uno. Because of the many components, we quickly ran out of

I/O pins on the Arduino. In order to solve this issue, the current sensors and fault flags of the

motor drivers were removed.

 	

94

6.	 Milestone	 6:	 Testing	 and	 Verification	

Testing is the step in the design process that comes after the prototype has been

completely built. Testing for the diwheel has been split up into five different categories, which

include mechanical, electrical, system integration, design specifications, and future testing. Each

section illustrates each and every test that was performed, how it was performed, the results from

the test, and the solutions that would be implemented to correct any failed tests.

 	

95

6.1	 Mechanical	 Component	 Testing	

The mechanical component testing consists of all the tests that pertained to the physical
workings of the diwheel. Each of the mechanical components was tested to ensure they
interacted correctly with one another. The tests that were carried out involved dynamic
components such as the wheels and the leveling system.

6.1.1	 Guide	 Wheels	

Figure 6.1.1: Original Guide Wheel Design

Test No. Test Procedure Expected Result Actual Result Pass/Fail Comments

1

Spinning bike
wheels to
simulate a
forward motion

A reasonable
amount of
friction between
the guide
wheels and the
rim of the bike
wheels

Too much
friction
between the
guide wheels
and the rim
of the bike
wheels

Fail
Material
was too soft
and sticky

Table 6.1.1: Testing of Original Guide Wheels

96

Plan for Correcting:

 The material used, soft rubber, ended up creating too much friction and not easily sliding
along the bike wheel rims. To fix this, hard plastic was bought and machined into the same shape
as the original guide wheels. In doing this, the guide wheels were made into the needed shape.
Being made from hard plastic, they do not create as much friction with the bike wheels; instead,
they allow the bike wheels to spin freely and are truly guide wheels just keeping everything in
place.

Figure 6.1.2: Redesigned Guide Wheels

Test No. Test Procedure Expected Result Actual Result Pass/Fail Comments

2

Spinning bike
wheels to
simulate a
forward motion
(after
modification)

Very little
friction between
the guide wheel
and rims of the
bike wheels

Very little
friction.
Allows for
free spinning.

Pass

Table 6.1.2: Testing of Modified Guide Wheels

97

6.1.2	 Leveling	 Set-‐Up	

Figure 6.1.3: Original Linear Leveling Set Up

Test No. Test Procedure Expected Results Actual Results Pass/Fail Comments

1 Sliding mass
along the rails

Very little
friction

Too much
friction and
binding

Fail

2

With mounts,
placing the
motor in the
proper location
and sliding the
mass along the
rails

Everything fits
nicely and has
enough clearance

Mounts were
too short
causing the
sliding mass to
hit the motor

Fail

3

While sliding
the mass,
observing the
stability of the
rail mounts

Sturdy and able
to take the forces
placed on it

Slightly
unstable Fail

Table 6.1.3: Linear Leveling Set-Up Tests

Plan for Correcting:

 The rail mounts were too short and not strong enough, so new mounts were designed and
machined out of steal instead of aluminum. Within the redesign, steel, instead of aluminum, was
used for more strength and stability. Also, the redesign simply used sheets of steel that were bent
at a 90° angle with cylinders welded for where the rails are set. It was determined that in order
for the mass to slide with little friction, the force needed to be applied at the center of the mass.

98

Figure 6.1.4: Modified Linear Leveling Rail Mounts

Figure 6.1.5: Modified Linear Leveling System Set-Up

99

Test
No.

Test Procedure Expected Results Actual Results Pass/Fail Comments

1 Sliding mass
along the rails

Very little
friction

Too much
friction Fail

The reason there
is added friction is
that the holes were
not drilled
perfectly straight
and therefore the
rails bow.

2

With mounts,
placing the
motor in the
proper location
and sliding the
mass along the
rails

Everything fits
nicely

There is
enough
clearance for
all components

Pass

3

While sliding
the mass,
observing the
stability of the
rail mounts

Sturdy and able
to take the forces
placed on it

With applied
force, the
mounts do not
move and are
able to handle
them

Pass

Table 6.1.4: Linear Leveling Set-Up Tests

Plan for Correcting:
 Ensuring that there is enough lube on the railings while the diwheel is being used will
help eliminate some of the unwanted friction. A Teflon lubricant was purchased which aided in
reducing the friction.

Test
No.

Test Procedure Expected Results Actual Results Pass/Fail Comments

4 Sliding mass
along the rails

Very little
friction

Very little
friction Pass

Table 6.1.5: Linear Leveling Set-Up Tests

100

6.1.3	 Drive	 Train	

Test No. Test Procedure Expected Results Actual Results Pass/Fail Comments

1

Drive axel
assembly was
held in place
under the plate
in order to
check the
distance
between the
drive wheel
and the frame
of the bike
wheel

Drive wheel is in
contact with the
rim of the bike
wheel

There was a
0.5” gap Fail

Table 6.1.6: Drive Train Location Testing

Plan for Correcting:

 The drive axel assembly was attached to a separate plate which was in turn mounted to
the bottom of the plate. Also, to close the gap even more, the assembly was moved to a new
location, forward on the plate instead of in the middle, to bring the drive wheel up higher on the
rims of the bike wheels.

Table 6.1.7: Redesigned Drive Train Location Testing

Test No. Test Procedure Expected Results Actual Results Pass/Fail Comments

2

Drive axel
assembly was
held in new
location in
order to check
the distance
between the
drive wheel
and the bike
wheel

Drive wheel is in
contact with the
rim of the bike
wheel

There was no
gap Pass

3

Drive axel
assembly was
held in new
location under
the plate in
order to check
the
functionality of
the new
location

New location
would be easily
adjustable

New location
was not easily
adjustable

Fail

101

Plan for Correcting:

 The drive wheel was brought back to the center of the plate, which again increased the
gap to the rim of the bike wheels. To close the gap, rubber was secured between the bearings of
the drive wheel assembly and the aluminum plate. Also, in order to avoid any bowing along the
drive wheel axel plate, a steel support plate was welded perpendicular to the drive wheel axel
plate and in the center of the frame.

Figure 6.1.6: Drive Train Assembly Drive Wheel on Bike Wheel Rim

Figure 6.1.7: Drive Axel Plate and Support Assembly

102

4

Drive axel
assembly was
held in new
location under
the plate in
order to check
the
functionality of
the new
location

Location would
not require
precise
alignment

Location did
not require
precise
alignment

Pass

5

Applied
tensioner and
checked to see
if there was
any bowing
along the drive
axle plate

No bowing will
occur

No bowing
occurred Pass

Table 6.1.8: Final Design Drive Train Location and Support Testing

103

6.1.4	 Controller	 Testing	

Figure 6.1.9: First Three Successive Peaks for Damping Test

Test No. Test Procedure Expected Results Actual Results Pass/Fail Comments

1

The body of
the Diwheel
was lifted until
the bottom was
perpendicular
to the ground.
It was then let
go and the
successive
peaks were
counted.

The damping of
the Diwheel will
be calculated

The damping
of the diwheel
was calculated
using the peak
times and
angles.

Pass

Damping
was used to
create
accurate
control
models.

Table 6.1.10: Damping Test Table

104

Figure 6.1.10: Response of System to Step Input

Test No. Test Procedure Expected

Results
Actual Results Pass/Fail Comments

1

Use Sisotool in
MatLab to
determine
controller for
linear sliding
system.

Controller
allows system to
attain steady
state quickly
when step is
applied.

Damping was
not obtained
from actual
sliding weight
system, so
effective
controller
could not be
determined.

Fail

Once the
encoder is
working we
can obtain an
accurate
controller.

2

Use Sisotool in
MatLab to
determine
controller for
determining
the position of
sliding weight.

Controller
allows system to
attain steady
state quickly
when step is
applied.

Controller
allows system
to attain steady
state quickly
when step is
applied.

Pass

Controller
was
converted
from
continuous to
discrete and
implemented
into
programming.
MatLab code
can be found
in Appendix
D.3.

Table6.1.11: Controls Testing

0 0.5 1 1.5 2 2.5 3 3.5
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Step Response

Time (seconds)

Am
pl

itu
de

105

6.2	 Electrical	 Component	 Testing	

 The electrical component testing involved testing the various parts that make up the
electrical system. The motor drivers, wireless communications, DC motors, and sensors all
needed to be tested before system integration. Once individual components were successfully
tested, they moved on to system integration.

 	

106

6.2.1	 Wireless	 Receiver/Transmitter	
	

Test
No

Test Procedure Expected
Result

Actual Result Pass/Fail Comments

1

Send an
arbitrary value
to the Wireless
Inventors Shield

RF DIN
(Received)
LED indicator
should light up

RF LED lit up
showing
success

Pass

Wireless
transmitter and
receiver are in
sync and ready
for data

2

Send a specified
value to
Arduino to light
up an LED

Red LED turns
on when “2” is
entered and
turns off when
“1” is entered

LED did not
turn on Fail

RF LED is lit
indication
received data,
but value is not
being received

3

Send a specified
value to
Arduino to light
up an LED.
This time using
the Hardware
Serial Pins

Red LED turns
on when “2” is
entered and
turns off when
“1” is entered

LED turned
on when 2
was pressed
and turned off
when 1 was
pressed

Pass

Need to use
Hardware Serial
Pins unless
specified
otherwise in
Arduino
program

Table 6.2.1: Wireless Communication Components Testing Procedures and Results

Figure 6.2.1: Wireless Communication Components Test

 	

107

6.2.2	 Drive	 Wheel	 Motor	 Drivers	
	

Test
No

Test Procedure Expected
Result

Actual Result Pass/Fail Comments

1

Use LEDs to
simulate motor
direction with
H-Bridge Motor
Driver 1A

LEDs turns on
when in
forward
direction and
turns off in
reverse
direction

LEDs turns on
when in
forward
direction and
turns off in
reverse
direction

Pass
Ready for
motor
integration

2

Send an enable
signal to motors
to turn them on
with 1 12V
battery

Motors turn on
in the desired
direction when
forward
command is
entered

Motor turned
on in the
correct
direction but
only ran for a
few seconds

Fail
Possibly not
enough power
to drive motor?

3

Send an enable
signal to motors
to turn them on
with 2 12V
batteries in
series

Motors turn on
in the desired
direction when
forward
command is
entered

Motor driver
exploded,
computer
turned off,
and Arduino
shorted out

Fail

Motor driver
not rated for the
high current
draw of motors

Table 6.2.2: H-Bridge Motor Driver 1A Test Procedures and Results

Plan for Correcting:

 The H-Bridge Motor Driver 1A is not rated for the 16A current draw of the DC motors. A
new motor driver will be selected that can handle 24V as well as at least 20A of current.

	
Figure 6.2.2: H-Bridge Motor Driver 1A Testing

108

Corrected testing with new Pololu High-Power Motor Drivers

	
Test
No

Test Procedure Expected
Result

Actual Result Pass/Fail Comments

1

Test both motor
drivers
simultaneously
with DC power
supply and
Oscilloscope (No
Load Test)

Square wave
should become
wider with a
higher PWM
value and flip
polarities when
direction is
changed

No Signal was
appearing on
oscilloscope

Fail Check reset in
programming

2

Test both motor
drivers
simultaneously
with DC power
supply and
Oscilloscope (No
Load Test)

Square wave
should become
wider with a
higher PWM
value and flip
polarities when
direction is
changed

Signal was
changing but
was very
inaccurate and
noisy

Fail
Check soldered
connections of
wires

3

Test both motor
drivers
simultaneously
with DC power
supply and
Oscilloscope (No
Load Test)

Square wave
should become
wider with a
higher PWM
value and flip
polarities when
direction is
changed

Square wave
became wider
with a higher
PWM value
and flipped
polarities
when the
direction was
changed

Pass
Ready for
system
integration

4

Test motor
driver speed
control
functionality
with 2 DC
motors and 2
12V batteries in
series

Motors
increase and
decrease speed
based on PWM
signal received

Motors
increased and
decreased
speed based
on PWM
signal given

Pass

Adjust levels of
speed in
program for
enhanced
control

5

Test motor
driver direction
control
functionality
with 2 DC motor
sand 2 12V
batteries in series

Motors turn in
the desired
direction based
on command

Motors
changed
direction
based on the
command
given

Pass

Make sure
motors do not
change
directions
instantaneously.
Add safety
measure in
program

Table 6.2.3: Pololu High-Power Motor Driver 24v23 CS Test Procedures and Results

109

Figure 6.2.3: 23A Motor Driver Arrangement and Setup

	
Figure 6.2.4: 23A Motor Driver Testing

110

6.2.3	 10A	 Motor	 Driver	 Arduino	 Shield	

Test
No

Test Procedure Expected
Result

Actual Result Pass/Fail Comments

1

Connect shield
to Arduino and
batteries. Use
on board test
buttons to test
connectivity.

Motor turns
forward or
backward
depending on
which button is
pressed.

Motor turned
the correct
direction
when buttons
were pressed

Pass
Ready to test
connected to
chain and load

2

Connect motor
to chain and
weight to test its
ability to move
weight

Motor spins
and pulls
weight along
track

Motor moves
weight along
track nicely

Pass

Ready to
measure
distance and
time taken to
move weight

3

Set motor to full
speed and time
how long it
takes to get
weight from
one side to the
other

Motor moves
weight at a
constant time
each test

Takes about 2
seconds to
move weight
across each
time

Pass Implement into
program

4

Manually
control motor to
see what speed
is necessary

A certain speed
is better than
another for
moving the
weight

High speed
seems to be
the only one
capable of
moving
weight
smoothly

Pass Test the
encoder

5

Measure the
motor turns
form the
encoder signals

HyperTerminal
reads back
motor position

System stops
responding
after motor
starts

Fail Check the
interrupt

6

Measure the
motor turns
form the
encoder signals
after interrupt in
program has
been modified

HyperTerminal
reads back
motor position

System stops
responding
after motor
starts

Fail

Interrupt is not
allowing any
other
commands to be
entered

Table 6.2.2: 10A Motor Driver Shield for Arduino Testing and Results

111

Figure 6.2.4: 10A Motor Driver Arduino Shield Testing

112

113

6.2.4	 IMU	 Sensor	 	

Test
No

Test Procedure Expected
Result

Actual Result Pass/Fail Comments

1

Setup IMU
sensor with
basic program
downloaded
from internet
and get raw
values

HyperTerminal
will display
values
corresponding
to yaw, pitch,
and roll angles

HyperTerminal
displayed
values
corresponding
to yaw, pitch,
and roll angles

Pass

Now need to
translate raw
data into angle
value that can
be used in
control
algorithm

2

Setup IMU
sensor with
basic program
downloaded
from internet
and get angle
values

HyperTerminal
will display
angle values
corresponding
to yaw, pitch,
and roll angles

HyperTerminal
displayed error
saying could
not connect

Fail Check raw
values again

3

Setup IMU
sensor with
basic program
downloaded
from internet
and get raw
values

HyperTerminal
will display
values
corresponding
to yaw, pitch,
and roll angles

HyperTerminal
displayed 0s
and was not
reading any
data

Fail Try another
program

4

Setup IMU
sensor with a
program
downloaded
from internet
and get raw
values

HyperTerminal
will display
values
corresponding
to yaw, pitch,
and roll angles

HyperTerminal
displayed 0s
and was not
reading any
data

Fail Chip may be
broken?

Table 6.2.4 Triple Axis Accelerometer and Gyroscope Breakout Board Testing and Results

114

	
Figure 6.2.5: IMU Sensor Testing 	

115

6.2.5	 Arduino	 Uno	 Microcontroller	

Test
No

Test Procedure Expected
Result

Actual Result Pass/Fail Comments

1

Write a simple
program to
verify Arduino
functionality

A character is
entered and the
Arduino
replies with
“received”
character sent

Arduino
replied with
character is
was sent

Pass

Arduino is
functional and
ready for
system
integration

2

Attach the
Arduino shields
and test to see
if it can be
programmed

Programs the
Arduino with
the new
program

Upload did not
go through Fail

Can it be
programmed
without the
shields?

3

Upload same
program but
without shields
attached

Programs the
Arduino with
the new
program

Upload was
successful Pass

Shields must be
removed to be
reprogrammed

4

Assign pins for
all
inputs/outputs
of motor
drivers and
motor encoder

Pins are
available for
each
component

Arduino Uno
does not have
the required
number of pins

Fail

Take out
optional
operations such
as current
sensors and
fault flags

5

Assign pins
after removing
certain
functions of the
motor drivers

Pins are
available for
each
component

There were
enough pins
for operation
of all systems

Pass

Use fuses to
avoid over
current without
current sensors

Table 6.2.5 Arduino Uno Microcontroller Testing and Results

Figure 6.2.6: Arduino Uno Testing

116

6.3	 Diwheel	 System	 Testing	

	
After the mechanical and electrical components were integrated together, diwheel system

testing could begin. This section of testing included all of the functionality tests. The diwheel
was tested to make sure that it would respond correctly to given commands and to ensure the
mechanical and electrical systems would run smoothly in unison.

6.3.1	 Systems	 Integration	

Figure 6.3.1: Initial Integration of the Electrical and Mechanical Systems

117

Test No. Test Procedure Expected Results Actual Results Pass/Fail Comments

1

Prop up the
diwheel so that
the wheels are
free to rotate
and give the
command for
forward low
speed

Both wheels
should spin
freely in the
forward direction

One wheel
could not keep
a consistent
speed

Fail

2

Place the
diwheel on the
ground and
give the
command for
forward low
speed

The diwheel
should drive
forward at a low
speed in a
straight line

Diwheel began
circling in a
counter
clockwise
direction

Fail

3

Prop up the
diwheel so that
the wheels are
free to rotate
and give the
command for
each direction
at each speed
greater than
one

Each wheel
should keep a
consistent speed
when freely
spinning

Each wheel
kept a
consistent
speed when
each of the
various
commands
were given

Pass

Table 6.3.1: Initial system tests

Plan for Correcting:

 The left wheel was experiencing more than normal friction due to the guide wheels while
it lacked the necessary friction between the diwheel and bike rim in order to transfer smooth
power. Both the guide wheel tensioner and the drive wheel axel assembly required adjustments.
The guide wheel tensioner needed to be slightly loosened while the drive wheel required more
force to be exerted against the bike rim.

118

Figure 6.3.2: Adjustable drive wheel as it connects with the inner surface of the bike rim

Figure 6.3.3: Guide Axel Tensioner

119

6.3.2	 Drivability	 Testing	

Test No. Test Procedure Expected Results Actual Results Pass/Fail Comments

4

Place the
diwheel on the
ground and
give the
command for
forward speed

The diwheel
should drive
forward at the
desired speed in
a straight line

The vehicle
drove relatively
straight and
only slightly
veered left

Fail

Table 6.3.2: Initial drivability test

Plan for Correcting:

 The diweel still did not drive straight when the forward command at various speeds was
given. The mechanical system could not be adjusted to improve this problem, so the decision
was made to alter the programming of the controller. The new program would implement active
turning so that when the diwheel was cruising and wanted to turn, or adjust for the error, it would
drop the either the left or the right voltage by a certain percentage. For the forward command the
right wheel was permanently reduced by 5% in order to counteract the diwheel from veering.

Test No. Test Procedure Expected Results Actual Results Pass/Fail Comments

5

Place the
diwheel on the
ground and
give the
command for
forward speed

The diwheel
should drive
forward at the
desired speed in
a straight line

The vehicle
traveled along
a much
straighter path.
It also could
now correct
itself and
initiate a turn

Pass/Fail

Table 6.3.3: Secondary drivability test

120

Figure 6.3.4: Testing the updated control system

Plan for Correcting:

 The diwheel was becoming more controllable with the new programming and became
even better with operator practice. The programming still produced a controllability that was
rough around the edges. The new program will be refined with acute changes that will result in a
more stable system. A greater variety of speeds will be implemented, along with different levels
of turning. For the lower speeds the turning will drop either wheel 30% power, the medium
speeds will drop either wheel 20% power and the top speeds will only drop either wheel by 10%
power.

Test No. Test Procedure Expected Results Actual Results Pass/Fail Comments

6

Give the
command for
forward and
adjust the
speed and
turning
accordingly

The diwheel
should drive at
the desired speed
and direction of
the operator

The vehicle is
now
moderately
controllable by
the operator,
but still is not
superb

Pass/Fail

7

Continue
testing diwheel
movement and
check the
specifications
for its
functionality

Diwheel moves
and keeps
chassis swing
below 15
degrees

While turning,
diwheel
stopped
working

Fail Check
circuitry

Table 6.3.4: Final drivability test.

121

122

The circuitry was checked and no faults could be found. The motors were connected directly to
the batteries to check motor/battery functionality. Both motors and batteries were operational.
The digital side of the components was checked and everything was function. The motor drivers
are the only components not responding and may have shorted out. The reason is unknown as a
simple spin had been performed many times previously.

Figure 6.3.5: Final controllability testing

123

6.3.3	 Linear	 motor	 function	 testing.	

Test
No

Test Procedure Expected
Result

Actual Result Pass/Fail Comments

1

Connect shield
to Arduino and
batteries. Use
on board test
buttons to test
connectivity.

Motor turns
forward or
backward
depending on
which button is
pressed.

Motor turned
the correct
direction
when buttons
were pressed

Pass
Ready to test
connected to
chain and load

2

Connect motor
to chain and
weight to test its
ability to move
weight

Motor spins
and pulls
weight along
track

Motor moves
weight along
track nicely

Pass

Ready to
measure
distance and
time taken to
move weight

3

Set motor to full
speed and time
how long it
takes to get
weight from
one side to the
other

Motor moves
weight at a
constant time
each test

Takes about 2
seconds to
move weight
across each
time

Pass Implement into
program

4

Manually
control motor to
see what speed
is necessary

A certain speed
is better than
another for
moving the
weight

High speed
seems to be
the only one
capable of
moving
weight
smoothly

Pass Test the
encoder

Table 6.3.4: Specifications tests.

124

Figure 6.3.6: Leveling system

125

6.4	 Specifications	 Testing	

Specification testing was an important section of testing because it would prove that the diwheel
was constructed to perform as initially desired. The design specification list was used to
determine the test that would be carried out. These tests would assess the performance of the
diwheel and ensure the proper functionality as an entire system.

Test No. Test Procedure Expected Results Actual Results Pass/Fail Comments

1

Record the
weight of the
entire diwheel

on a scale

The diwheel is
expected to

weigh less than
30kg

26.2kg Pass

2

Record the
amount of time

the batteries
last for

operation

The diwheel
batteries last at

least 30 minutes

Batteries lasted
past 30 minutes

and spanned
several days of

testing

Pass

3

The diwheel
will be dropped
from a height
of 0.5 meters

Diwheel
sustainability of
a 0.5 meter drop
without loss of
functionality

The diwheel
remained

functional after
the impact of
the drop test

Pass

4

Weigh the
hardware,

attach it and
run the diwheel
to ensure that
the hardware

remains secure

The attached
hardware will
remain secure
and will not

inhibit standard
functionality of

the diwheel

The hardware
remained

secure and did
not inhibit
standard

functionality of
the diwheel

Pass

5

Diwheel testing
by using the

gyroscope and
linear leveling

system and
using the
desined

controller

The control
system will
stabilize the
diwheel and

keep the overall
angle below 15
degrees when
accelerating

Gyroscope and
encoder were

not functioning
so test could

not be
performed.

Fail

Table 6.4.1: Specifications tests.

126

6.5	 Future	 Testing	 Plan	

 It has been determined that while controlling the diwheel from a computer and only
having the input of buttons to be pushed and released, the diwheel has reached its level of
controllability. In order for the vehicle to become superbly controllable there would have to be a
change in the user interface. This means a joystick or a gaming controller would have to be
implemented into the program. Theses controllers have the ability to administer a smooth signal
that can gradually increase, decrease and turn mechanical system.

Figure 6.5.1: Xbox controller with joysticks.

 Due to unforeseen complications with the motor drivers and the gyroscope, there were
some specifications testing that could not be completed. The tests that are listed below will be
left for the future mechanical engineering students.

Specifications Proposed Testing Procedure

Diwheel maximum velocity of 7.3 m/s

Putting the diwheel into motion and then
timing how long it takes to travel a set distance
between two points

Diwheel maximum acceleration time of 3
seconds

Accelerate diwheel and calculate its actual
acceleration

Diwheel is equipped with a functioning failsafe
unit

Simulate loosing battery power, frequency
disturbance, and receiver being out of range
and ensure the failsafe is operating properly
under each circumstance

Table 6.5.1: Future Testing Plans and Procedures

	 	

127

Conclusion	

In order to solve to problem of making a two-wheeled, mobile, durable vehicle on which

different hardware can be mounted and kept level, the team researched and designed a suitable

product for manufacturing. With the help of computer-aided design and computer programming,

we aim to construct our proposed model and test the functionality of it. The diwheel will be built

within budget and within the allotted time given by the client.

128

A.	 Appendix	 A:	 Project	 Management	 Plan	

The Project Management Plan includes Work Breakdown Structure and Gantt chart. The

Project Management Plan shows what steps need to be taken as a team to achieve the final

product. The Work Breakdown Structure is a graphical representation of how the project is

broken down. It is broken down into sections such as the milestones and deliverables and then

each of those sections are broken down further into subsections. The Gantt chart is like a

timeline version of the Work Breakdown Structure. It shows the start and end date of each

portion as well as completion percentage and who is in charge of each section. The Project

Management Plan will make sure that the team stays on track with the deadlines.

129

A.1	 Work	 Breakdown	 Structure	

A work breakdown structure is a flow chart or tree representation of the Gantt Chart. It

shows the tasks that need to be finished in order for a project to be completed. The tasks listed

then have subsections that list the topics that the task must cover in order to be completed. For

this project there are the tasks of Define Client Expectations, Research, Product Design, Project

Management Documentation and Deliverables.

130

A.2	 Gantt	 Chart	

A Gantt Chart is a timeline representation of the Work Breakdown Structure. It provides

deadlines and durations for each task that was listed in the Work Breakdown Structure. For this

project the tasks that are listed in the Gantt Chart are Define Client Expectations, Research,

Product Design, Project Management Documentation and Deliverables. Each task has a deadline

in order to meet the final deadline of December 7, 2012.

131

132

133

A.3	 Statement	 of	 Work	

A Statement of Work is a bulleted list derived from the Work Breakdown Structure. It

shows the tasks that need to be finished in order for a project to be completed. The tasks listed

then have subsections that list the topics that the task must cover in order to be completed. The

Statement of Work clearly shows who is in charge of ensuring completion for each of the given

tasks.

Construction of Design

• Construct Mechanical Components (Dean, Dennis, Vanjoff, McLaughlin)

• Construct Electrical Components (Parisi)

134

B.	 Appendix	 B:	 Detailed	 Design	 	

B.1	 Drawings	

 The detailed design drawings are crucial elements to the design of the product. They are

2-D representations of the 3-D model. These drawings include the detailed dimensions and

tolerances needed for the manufacturing of the product.

135

136

137

138

139

140

141

142

143

144

145

B.2	 Specifications	

Chassis Assembly Parts

Figure B.2.1: Long Axel Collar

146

Figure B.2.2: Bolt

147

Leveling Assembly Parts

Figure B.2.3: Motor

Figure B.2.4: Motor Dimensions

148

Figure B.2.6: Gear

149

Figure B.2.7: Sprocket

150

Figure B.2.8: Rail Mount

Wheels and Drivetrain Assembly Parts

Figure B.2.9: 250W Motor

151

Figure B.2.10: 250W Motor Specs.

152

Figure B.2.11: Drive Wheel

153

Figure B.2.12: Drive Wheel Gea

154

Figure B.2.13: Battery

155

156

B.3	 Parts	 List	 and	 Budget	

Part Description Part Name Price ($)
Weight
(kg)

Drive	 Motor	 (X2) 250W	 Motor	 -‐	 24	 Volts	 (Style:	 MY1016) $100.15	 3

Drive	 Wheel	 Gear	 (X2)
Steel Finished-Bore Roller Chain Sprocket for
#25 Chain, 1/4" Pitch, 22 Teeth, 1/2" Bore $15.14	 0.239

Multipurpose	 Chain	 (6ft)
Standard ANSI Roller Chain #25, Single
Strand, 1/4" Pitch, .13" Dia $22.38	 0.2617

Drive	 Wheel
Solid Roller - 1/2 in Shaft Drive - 60 Dur
Neoprene - 4.00 in Dia X 0.92 in Wide $103.16	 0.7385

Battery Ezip	 Scooter	 eZip	 900	 Battery	 Set $61.68 7.7
Battery	 Charger 12	 Volt	 2	 Amp	 Battery	 Charger $20.87	
Drive	 Wheel	 Axel 1/2 inch Dia. 1018 Cold Finish Steel Round $0.00	

Drive	 Wheel	 Axel	 Bearings	 (X4)
Stamped-Steel Mounted Ball Bearing--ABEC-1
2-Bolt Base Mount, for 1/2" Shaft Diameter $43.80 0.7252

Tensioner	 Bolt	 (X2) 1/4-‐20	 Bolt	 -‐	 Tensioner $8.00	 0.0655

Top	 Long	 Axel	 Collars
Black-Oxide Steel Set Screw Shaft Collar 1/2"
Bore, 1" Outside Diameter, 7/16" Width $1.68	 0.0632

Guide	 Wheel	 (X6) 1	 ft	 Delron	 Stock	 2.5"	 Diameter $25.00 1
Rim	 (X2) sun	 cr18 $50.00 2
Tire	 (X2) 26	 x	 1.5	 Amerityre	 Solid	 Rubber $100.20 1

Idle	 Axel
3/8 inch Dia. 1018 Cold Finish Steel Round, 2ft
length $2.24	 0.25

Idle	 Axel	 Collar	 (X4)
Black-Oxide Steel Set Screw Shaft Collar 3/8"
Bore, 3/4" Outside Diameter, 3/8" Width $2.88	 0.0592

Idler	 (X2)
Steel Finished-Bore Roller Chain Sprocket for
#25 Chain, 1/4" Pitch, 14 Teeth, 1/2" Bore $12.12	 0.0476

Idle	 Bearings	 (X4)
SAE 841 Bronze Flanged-Sleeve Bearing for
3/8" Shaft Diameter, 1/2" OD, 1/4" Length $2.80	 0.0142

Rails	 (X2)
Hardened Precision Steel Shaft 3/8" Diameter,
12" Length $12.12	 0.3424

Linear	 Bearing	 (X2)
SAE 841 Bronze Flanged-Sleeve Bearing for
3/8" Shaft Diameter, 5/8" OD, 1" Length $3.88	 0.0486

Leveling	 Motor 29:1	 Metal	 Gearmotor	 37Dx52L	 mm $24.95 1

Leveling	 Motor 19:1	 Metal	 Gearmotor	 37Dx52L	 mm	 with	 encoder $40.91 1
Leveling	 Motor	 Mount	 (1ft) 1/8 X 1-1/2 Hot Rolled Steel Flat, 2ft length $3.06

Mass	 Plate
1 x 1 Square Bar Hot Rolled A-36 Steel
Square, 2ft length $8.84 1

Gear	 motor	 sprocket
Steel Finished-Bore Roller Chain Sprocket for
#25 Chain, 1/4" Pitch, 9 Teeth, 1/4" Bore $7.95 0.0098

157

Plate
.190 (3/16) thick 3003-H14 Aluminum Plate,
1ftx2ft $30.06	 2

Arms 1/8 X 1 Hot Rolled Steel Flat, 6ft $8.80	 1
Plate	 Frame 1/2 X 1/2 X 1/8 Steel Angle A-36 Steel Angle $10.92	 1.5
Multi	 Purpose	 Axel Steel Drive Shaft 1/2" OD, 8ft length $16.08	 1

Housing	 (X2)
Optically Clear Cast Acrylic Sheet 1/16" Thick,
24" X 24" $30.06 1.49

Hardware	 Table	 Legs Machined $0.00 0.1
Hardware	 Table	 Legs Machined $0.00 0.1
Hardware	 Table	 Legs Machined $0.00 0.1
Hardware	 Table	 Legs Machined $0.00 0.1
Hardware	 plate Machined $0.00 0.1
Arduino/Breadboard NA $31.99
Wireless	 RF	 USB	 Dongle RFD21807 $75.00
Wireless	 Inventor	 Shield RFD21815 $30.00
Pololu	 High-‐Power	 Motor	
Driver	 24v23	 CS 1456 $125.90	
10A	 DC	 Motor	 Driver	 Arduino	
Shield RB-‐Cyt-‐116 $19.06	
Gardner	 Bender	 20	 Amp	 Single-‐
Pole	 Toggle	 Switch GSW-‐11 $7.94	
Fuse	 Holder $5.00	
60	 Piece	 AGC	 Glass	 Automotive	
Fuse	 Set 67962 $5.99	
H-‐Bridge	 Motor	 Driver	 1A COM-‐00315 $2.35
Double BTS Motor Driver BTS75960B $40.00
Triple	 Axis	 Accelerometer	 &	
Gyro	 Breakout	 -‐	 MPU-‐6050 SEN-‐11028 $39.99

TOTAL: $1,152.95 28.05

158

C.	 Appendix	 C:	 Arduino	 Sketch	

 The Arduino Sketches are what control the entire Diwheel and its movement. Several

revisions were made and the two majorly changed codes are located in this Appendix. The first

was tested and functioned as desired. The second had revisions made to it that have not been

tested due to the system failure during testing.

 	

159

C.1	 Initial	 Diwheel	 Program	

//******Senior Capstone Design Diwheel Program 2.0********//
/*
Author: Christopher Parisi
Organization: California Baptist University College of Engineering

Code has been tested and works for controlling the diwheel

Baud Rate: 9600 (Arduino Standard)
Use either HyperTerminal or Arduino Serial Monitor for Control

CAUTION! When controlling Diwheel, be sure not to change motor direction instantaneously.
Back EMF can harm the motor drivers and permanently break them.

Controls for Diwheel
w: forward
s: backward
a: left
d: right
q: spin counter-clock wise
e: spin clock wise
x: stop
g: start system
r: reset system
1: 10% Speed
2: 20% Speed
3: 30% Speed
4: 40% Speed
5: 50% Speed
6: 60% Speed
7: 70% Speed
8: 80% Speed
9: 90% Speed
0: 100% Speed
*/

//Arduino Pin Assignments
const int LM_DIR = 12; //Direction control for the linear motor
const int LM_PWM = 3; //PWM Signal for speed control of linear motor
const int LM_EncA = 2; //Linear motor encoder A
const int LM_EncB = 5; //Linear motor encoder A
const int M1_DIR = 6; //Direction control for Motor 1
const int M2_DIR = 7; //Direction control for Motor 2
const int M1_RESET = 8; //Reset signal for Motor Driver 1
const int M2_RESET = 9; //Reset signal for Motor Driver 2
const int M1_PWMH = 10; //PWM signal for speed control of Motor 1
const int M2_PWMH = 11; //PWM signal for speed control of Motor 2

//Other Variable Assignments
//volatile unsigned int encoderPos = 0;
int command = 0; //User input from Serial Terminal
char dir = 'f';
int spd = 0;
char lm_dir = 'f';

160

char lm_pos = 'b';

 void setup()
 {
 //code section from from http://playground.arduino.cc/Main/RotaryEncoders#Example1
 pinMode(LM_EncA, INPUT);
 digitalWrite(LM_EncA, HIGH); // turn on pullup resistor
 pinMode(LM_EncB, INPUT);
 digitalWrite(LM_EncB, HIGH); // turn on pullup resistor
 //attachInterrupt(0, doEncoder, CHANGE); // encoder pin on interrupt 0 - pin 2

 Serial.begin(9600); //9600 Baud Rate

 Serial.println("Starting Up...");
 pinMode(LM_DIR, OUTPUT);
 pinMode(LM_PWM, OUTPUT);
 //pinMode(LM_EncA, INPUT);
 //pinMode(LM_EncB, INPUT);
 pinMode(M1_DIR, OUTPUT);
 pinMode(M2_DIR, OUTPUT);
 pinMode(M1_RESET, OUTPUT); //defualt HIGH
 pinMode(M2_RESET, OUTPUT); //default HIGH
 pinMode(M1_PWMH, OUTPUT);
 pinMode(M2_PWMH, OUTPUT);

 stopmotors();
 Serial.println("System Ready.");

 }

 void loop()
 {
 /* Fault Flags removed due to lack of I/O Pins on Arduino
 if ((FF1Motor1 == LOW && FF2Motor1 == HIGH) || (FF1Motor2 == LOW &&

FF2Motor2 == HIGH)) //Short Circuit
 {
 stopmotors();
 Serial.println("Short Circuit Detected. Stopping Diwheel");
 }
 else if((FF1Motor1 == HIGH && FF2Motor1 == LOW) || (FF1Motor2 == HIGH && FF2Motor2 == LOW))
//Over Temperature
 {
 stopmotors();
 Serial.println("Over Temperature. Stopping Diwheel");
 }
 else if ((FF1Motor1 == HIGH && FF2Motor1 == HIGH) || (FF1Motor2 == HIGH && FF2Motor2 ==
HIGH)) //Under Voltage
 {
 stopmotors();
 Serial.println("Under Voltage. Stopping Diwheel");
 }
 */

 if (Serial.available() > 0)
 {
 command = Serial.read();

161

 switch(command) {

 case 'w': //forward
 if (dir == 'b' || dir == 's')
 {
 stopmotors();
 delay(1000);
 }
 digitalWrite(M1_DIR, HIGH); //Current flows from OUTA(+) to OUTB(-)
 digitalWrite(M2_DIR, HIGH); //Current flows from OUTA(+) to OUTB(-)
 dir = 'f';
 speedControl(dir, spd);
 break;

 case 'a': //left
 dir = 'l';
 speedControl(dir, spd);
 break;

 case 's': //backward
 if (dir == 'f' || dir == 's')
 {
 stopmotors();
 delay(1000);
 }
 digitalWrite(M1_DIR, LOW); //Current flows from OUTB(-) to OUTA(+)
 digitalWrite(M2_DIR, LOW); //Current flows from OUTB(-) to OUTA(+)
 dir = 'b';
 speedControl(dir, spd);
 break;

 case 'd': //right
 dir = 'r';
 speedControl(dir, spd);
 break;

 case 'e': //spin clockwise
 stopmotors();
 digitalWrite(M1_DIR, HIGH);
 digitalWrite(M2_DIR, LOW);
 dir = 's';
 break;
 case 'q': //spin counter-clockwise
 stopmotors();
 digitalWrite(M1_DIR, LOW);
 digitalWrite(M2_DIR, HIGH);
 dir = 's';
 break;
 case 'r': //Reset Motor Driver Circuits
 digitalWrite(M1_RESET, LOW); //Resets Motor 1 (Clears Fault Flags)
 digitalWrite(M2_RESET, LOW); //Resets Motor 2 (Clears Fault Flags)
 break;
 case 'g': //Realeases hold from RESET signal. Must use for initial start up
 digitalWrite(M1_RESET, HIGH);
 digitalWrite(M2_RESET, HIGH);
 break;

162

 case 'x': //stop(coast)
 analogWrite(M1_PWMH, 0); //Turn the motor off by shorting it to GND
 analogWrite(M2_PWMH, 0); //Turn the motor off by shorting it to GND
 analogWrite(LM_PWM, 0); //Turn the motor off by shorting it to GND
 spd = 0;
 break;

 case 'k': //Linear motor forward

 if (lm_dir == 'b')
 {
 stopmotors();
 delay(1000);
 }
 digitalWrite(LM_DIR, LOW);
 lm_dir = 'f';
 speedControl(dir, spd);

 break;

 case 'l': //Linear motor backward

 if (lm_dir == 'f')
 {
 stopmotors();
 delay(1000);
 }
 digitalWrite(LM_DIR, HIGH);
 lm_dir = 'b';
 speedControl(dir, spd);

 break;

 case '1':
 spd = 25; //10% power
 speedControl(dir,spd);
 break;
 case '2':
 spd = 50; //20% power
 speedControl(dir,spd);
 break;
 case '3':
 spd = 75; //30% power
 speedControl(dir,spd);
 break;
 case '4':
 spd = 100; //40% power
 speedControl(dir,spd);
 break;
 case '5':
 spd = 125; //50% power
 speedControl(dir,spd);
 break;
 case '6':
 spd = 150; //60% power

163

 speedControl(dir,spd);
 break;
 case '7':
 spd = 175; //70% power
 speedControl(dir,spd);
 break;
 case '8':
 spd = 200; //80% power
 speedControl(dir,spd);
 break;
 case '9':
 spd = 225; //90% power
 speedControl(dir,spd);
 break;
 case '0':
 spd = 255; //100% power
 speedControl(dir,spd);
 break;

 }
 }
 }

 void speedControl(char dir, int x)
 {
 if (dir == 'f' || dir == 'b' || dir == 's')
 {
 analogWrite(M1_PWMH, (x-0.1*x)); //10% reduced to counter drift
 analogWrite(M2_PWMH, x);
 if (dir == 'f' && lm_pos != 'b')
 {
 digitalWrite(LM_DIR, HIGH);
 analogWrite(LM_PWM, 255);
 delay(1600);
 analogWrite(LM_PWM, 0);
 lm_pos = 'b';
 }
 else if (dir = 'b' && lm_pos != 'f')
 {
 digitalWrite(LM_DIR, LOW);
 analogWrite(LM_PWM, 255);
 delay(1700);
 analogWrite(LM_PWM, 0);
 lm_pos = 'f';
 }
 }
 else if (dir == 'l')
 {
 if (spd == 50 || spd == 75 || spd == 100) //30% drop in speed in left wheel
 {
 analogWrite(M1_PWMH, (x-0.3*x));
 analogWrite(M2_PWMH, x);
 }
 else if (spd == 125 || spd == 150 || spd == 175) //20% drop in speed in left wheel
 {

164

 analogWrite(M1_PWMH, (x-0.2*x));
 analogWrite(M2_PWMH, x);
 }
 else if (spd == 200 || spd == 225 || spd == 255) //10% drop in speed in left wheel
 {
 analogWrite(M1_PWMH, (x-0.1*x));
 analogWrite(M2_PWMH, x);
 }
 else
 {
 analogWrite(M1_PWMH, x/2);
 analogWrite(M2_PWMH, x);
 }
 }
 else if (dir == 'r')
 {
 if (spd == 50 || spd == 75 || spd == 100) //30% drop in speed in right wheel
 {
 analogWrite(M1_PWMH, x);
 analogWrite(M2_PWMH, (x-0.3*x));
 }
 else if (spd == 125 || spd == 150 || spd == 175) //20% drop in speed in right wheel
 {
 analogWrite(M1_PWMH, x);
 analogWrite(M2_PWMH, (x-0.2*x));
 }
 else if (spd == 200 || spd == 225 || spd == 255) //10% drop in speed in right wheel
 {
 analogWrite(M1_PWMH, x);
 analogWrite(M2_PWMH, (x-0.1*x));
 }
 else
 {
 analogWrite(M1_PWMH, x);
 analogWrite(M2_PWMH, x/2);
 }
 }

 }

 void stopmotors()
 {
 analogWrite(M1_PWMH, 0); //Turn the motor off by shorting it to GND
 analogWrite(M2_PWMH, 0); //Turn the motor off by shorting it to GND
 analogWrite(LM_PWM, 0); //Turn the motor off by shorting it to GND
 }

/*
 void doEncoder()
 {
 /* If pinA and pinB are both high or both low, it is spinning
 * forward. If they're different, it's going backward.
 *
 * For more information on speeding up this process, see
 * [Reference/PortManipulation], specifically the PIND register.
 / /

165

 if (digitalRead(LM_EncA) == digitalRead(LM_EncB)) {
 encoderPos++;
 } else {
 encoderPos--;
 }

 Serial.println (encoderPos, DEC);
}*/

/* Alternate function to show detail in encoder
void doEncoder_Expanded(){
 if (digitalRead(encoder0PinA) == HIGH) { // found a low-to-high on channel A
 if (digitalRead(encoder0PinB) == LOW) { // check channel B to see which way
 // encoder is turning
 encoder0Pos = encoder0Pos - 1; // CCW
 }
 else {
 encoder0Pos = encoder0Pos + 1; // CW
 }
 }
 else // found a high-to-low on channel A
 {
 if (digitalRead(encoder0PinB) == LOW) { // check channel B to see which way
 // encoder is turning
 encoder0Pos = encoder0Pos + 1; // CW
 }
 else {
 encoder0Pos = encoder0Pos - 1; // CCW
 }

 }
 Serial.println (encoder0Pos, DEC); // debug - remember to comment out
 // before final program run
 // you don't want serial slowing down your program if not needed
}
*/

 	

166

C.2	 Updated	 Diwheel	 Program	

//******Senior Capstone Design Diwheel Program 3.0********//
/*

CODE MODIFIED AFTER DIWHEEL FAILURE: PROGRAM HAS NOT BEEN TESTED

Author: Christopher Parisi
Organization: California Baptist University College of Engineering

Baud Rate: 9600 (Arduino Standard)
Use either HyperTerminal or Arduino Serial Monitor for Control

CAUTION! When controlling Diwheel, be sure not to change motor direction instantaneously.
Back EMF can harm the motor drivers and permanently break them.

Descrete Transfer Function For Sensor Feedback:
If the gryo and acceleromter IMU sensor was functional, this transfer function would have been used for
controlling the angle of the chassis.
The transfer function takes in a theta value and provides a distance that the linear weight needs to be
moved.
This number would be used along with the linear motor encoder to control how far the weight is moved at
what time.
Z represents the pitch angle given from the IMU sensor and then give a distance.
This movement will be tied to Arduino's Interrupt and will constantly be moving to compensate for various
accelerations.

(5.519*z^2 - 10.95*z + 5.43) / (z^3 - 2.573*z^2 + 2.204*z - 0.6278) = distance

Controls for Diwheel
w: forward
s: backward
a: left
d: right
x: stop(safety stop-slows down before stopping)
v: emergency stop
g: start system
r: reset system
1: 10% Speed
2: 20% Speed
3: 30% Speed
4: 40% Speed
5: 50% Speed
6: 60% Speed
7: 70% Speed
8: 80% Speed
9: 90% Speed
0: 100% Speed
*/

//Arduino Pin Assignments
const int LM_DIR = 12; //Direction control for the linear motor
const int LM_PWM = 3; //PWM Signal for speed control of linear motor --CAN I ACTUALL USE THIS
PIN?
const int LM_EncA = 2; //Linear motor encoder A

167

const int LM_EncB = 5; //Linear motor encoder A
const int M1_DIR = 6; //Direction control for Motor 1
const int M2_DIR = 7; //Direction control for Motor 2
const int M1_RESET = 8; //Reset signal for Motor Driver 1
const int M2_RESET = 9; //Reset signal for Motor Driver 2
const int M1_PWMH = 10; //PWM signal for speed control of Motor 1
const int M2_PWMH = 11; //PWM signal for speed control of Motor 2

//Other Variable Assignments
//volatile unsigned int encoderPos = 0;
int command = 0; //User input from Serial Terminal
int sub_command = 0; //Command used to update information during ramping function
char dir = 'f'; //keeps track of diwheel direction
int spd = 0; //Updates speed which is used to control diwheel speed
int current_spd = 0; //keeps track of current speed for ramping function
int desired_spd = 0; //keeps track of desired speed for ramping function
char lm_dir = 'f'; //keeps track of linear motor direction
char lm_pos = 'b'; //keeps track of which side the weight is located

 void setup()
 {
 //code section from from http://playground.arduino.cc/Main/RotaryEncoders#Example1
 pinMode(LM_EncA, INPUT);
 digitalWrite(LM_EncA, HIGH); // turn on pullup resistor
 pinMode(LM_EncB, INPUT);
 digitalWrite(LM_EncB, HIGH); // turn on pullup resistor
 //attachInterrupt(0, doEncoder, CHANGE); // encoder pin on interrupt 0 - pin 2

 Serial.begin(9600); //9600 Baud Rate

 Serial.println("Starting Up...");
 pinMode(LM_DIR, OUTPUT);
 pinMode(LM_PWM, OUTPUT);
 //pinMode(LM_EncA, INPUT);
 //pinMode(LM_EncB, INPUT);
 pinMode(M1_DIR, OUTPUT);
 pinMode(M2_DIR, OUTPUT);
 pinMode(M1_RESET, OUTPUT); //defualt HIGH
 pinMode(M2_RESET, OUTPUT); //default HIGH
 pinMode(M1_PWMH, OUTPUT);
 pinMode(M2_PWMH, OUTPUT);

 brakeMotors();
 Serial.println("System Ready.");

 }

 void loop()
 {
 /* Fault Flags removed due to lack of I/O Pins on Arduino
 if ((FF1Motor1 == LOW && FF2Motor1 == HIGH) || (FF1Motor2 == LOW && FF2Motor2 == HIGH))
//Short Circuit
 {
 stopmotors();
 Serial.println("Short Circuit Detected. Stopping Diwheel");

168

 }
 else if((FF1Motor1 == HIGH && FF2Motor1 == LOW) || (FF1Motor2 == HIGH && FF2Motor2 == LOW))
//Over Temperature
 {
 stopmotors();
 Serial.println("Over Temperature. Stopping Diwheel");
 }
 else if ((FF1Motor1 == HIGH && FF2Motor1 == HIGH) || (FF1Motor2 == HIGH && FF2Motor2 ==
HIGH)) //Under Voltage
 {
 stopmotors();
 Serial.println("Under Voltage. Stopping Diwheel");
 }
 */

 if (Serial.available() > 0)
 {
 command = Serial.read();
 switch(command) {

 case 'w': //forward
 if (dir == 'b' || dir == 's')
 {
 brakeMotors(); //Stop Motors to avoid back EMF
 delay(1000);
 }
 digitalWrite(M1_DIR, HIGH); //Current flows from OUTA(+) to OUTB(-)
 digitalWrite(M2_DIR, HIGH); //Current flows from OUTA(+) to OUTB(-)
 dir = 'f';
 speedControl(dir, spd); //adjust direction while moving
 break;

 case 'a': //left
 dir = 'l';
 speedControl(dir, spd); //adjust direction while moving
 break;

 case 's': //backward
 if (dir == 'f' || dir == 's')
 {
 brakeMotors(); //Stop Motors to avoid back EMF
 delay(1000);
 }
 digitalWrite(M1_DIR, LOW); //Current flows from OUTB(-) to OUTA(+)
 digitalWrite(M2_DIR, LOW); //Current flows from OUTB(-) to OUTA(+)
 dir = 'b';
 speedControl(dir, spd); //adjust direction while moving
 break;

 case 'd': //right
 dir = 'r';
 speedControl(dir, spd);
 break;

 case 'e': //spin clockwise
 brakeMotors();

169

 delay(1000);
 digitalWrite(M1_DIR, HIGH);
 digitalWrite(M2_DIR, LOW);
 dir = 's';
 break;
 case 'q': //spin counter-clockwise
 brakeMotors();
 delay(1000);
 digitalWrite(M1_DIR, LOW);
 digitalWrite(M2_DIR, HIGH);
 dir = 's';
 break;

 case 'r': //Reset Motor Driver Circuits
 digitalWrite(M1_RESET, LOW); //Resets Motor 1 (Clears Fault Flags)
 digitalWrite(M2_RESET, LOW); //Resets Motor 2 (Clears Fault Flags)
 break;
 case 'g': //Realeases hold from RESET signal. Must use for initial start up
 digitalWrite(M1_RESET, HIGH);
 digitalWrite(M2_RESET, HIGH);
 break;

 case 'x': //stop(coast)
 slowMotors();
 break;

 case 'v': //emergency stop (break)
 brakeMotors();
 break;

 case 'k': //Linear motor forward (USE ONLY FOR TESTING!)
 if (lm_dir == 'b')
 {
 brakeMotors();
 delay(1000);
 }
 digitalWrite(LM_DIR, LOW);
 lm_dir = 'f';
 speedControl(dir, spd);
 break;

 case 'l': //Linear motor backward (USE ONLY FOR TESTING!)
 if (lm_dir == 'f')
 {
 brakeMotors();
 delay(1000);
 }
 digitalWrite(LM_DIR, HIGH);
 lm_dir = 'b';
 speedControl(dir, spd);
 break;

 case '1':
 spd = 25; //10% power
 desired_spd = 1;
 speedRamp();

170

 break;
 case '2':
 spd = 50; //20% power
 desired_spd = 2;
 speedRamp();
 break;
 case '3':
 spd = 75; //30% power
 desired_spd = 3;
 speedRamp();
 break;
 case '4':
 spd = 100; //40% power
 desired_spd = 4;
 speedRamp();
 break;
 case '5':
 spd = 125; //50% power
 desired_spd = 5;
 speedRamp();
 break;
 case '6':
 spd = 150; //60% power
 desired_spd = 6;
 speedRamp();
 break;
 case '7':
 spd = 175; //70% power
 desired_spd = 7;
 speedRamp();
 break;
 case '8':
 spd = 200; //80% power
 desired_spd = 8;
 speedRamp();
 break;
 case '9':
 spd = 225; //90% power
 desired_spd = 9;
 speedRamp();
 break;
 case '0':
 spd = 255; //100% power
 desired_spd = 0;
 speedRamp();
 break;
 }
 }
 }

 void speedRamp()
 {
 if (desired_spd > current_spd)
 {
 while ((current_spd != desired_spd) && (Serial.read() != 'x') && (Serial.read() != 'v'))
 {

171

 sub_command = Serial.read(); //check if a new command has been updated
 if (sub_command == 'l')
 {
 dir = 'l';
 }
 else if (sub_command == 'r')
 {
 dir = 'r';
 }
 current_spd++; //ramp of speed 10% at a time
 spd = current_spd*25; //Pass PWM number corresponding to speed
 speedControl(dir, spd); //Update speed and direction
 delay(500); //Wait 1/2 a second until ramping up again
 }
 if (Serial.read() == 'v')
 {
 brakeMotors();
 }
 else if (Serial.read() == 'x')
 {
 slowMotors();
 }
 }
 else if (desired_spd < current_spd)
 {
 while ((current_spd != desired_spd) && (Serial.read() != 'x') && (Serial.read() != 'v'))
 {
 sub_command = Serial.read();
 if (sub_command == 'l')
 {
 dir = 'l';
 }
 else if (sub_command == 'r')
 {
 dir = 'r';
 }
 current_spd--;
 spd = current_spd*25;
 speedControl(dir, spd);
 delay(500);
 }
 if (Serial.read() == 'v')
 {
 brakeMotors();
 }
 else if (Serial.read() == 'x')
 {
 slowMotors();
 }
 }
 else
 speedControl(dir, spd);
 }

 void speedControl(char dir, int x)
 {

172

 if (dir == 'f' || dir == 'b' || dir == 's')
 {
 analogWrite(M1_PWMH, (x-0.1*x)); //10% reduced to counter drift
 analogWrite(M2_PWMH, x);
 if (dir == 'f' && lm_pos != 'b')
 {
 digitalWrite(LM_DIR, HIGH);
 analogWrite(LM_PWM, 255);
 delay(1000);
 analogWrite(LM_PWM, 0);
 lm_pos = 'b';
 }
 else if (dir = 'b' && lm_pos != 'f')
 {
 digitalWrite(LM_DIR, LOW);
 analogWrite(LM_PWM, 255);
 delay(1600);
 analogWrite(LM_PWM, 0);
 lm_pos = 'f';
 }
 }
 else if (dir == 'l')
 {
 if (spd == 50 || spd == 75 || spd == 100) //30% drop in speed in left wheel
 {
 analogWrite(M1_PWMH, (x-0.3*x));
 analogWrite(M2_PWMH, x);
 }
 else if (spd == 125 || spd == 150 || spd == 175) //20% drop in speed in left wheel
 {
 analogWrite(M1_PWMH, (x-0.2*x));
 analogWrite(M2_PWMH, x);
 }
 else if (spd == 200 || spd == 225 || spd == 255) //10% drop in speed in left wheel
 {
 analogWrite(M1_PWMH, (x-0.1*x));
 analogWrite(M2_PWMH, x);
 }
 else
 {
 analogWrite(M1_PWMH, x/2);
 analogWrite(M2_PWMH, x);
 }
 }
 else if (dir == 'r')
 {
 if (spd == 50 || spd == 75 || spd == 100) //30% drop in speed in right wheel
 {
 analogWrite(M1_PWMH, x);
 analogWrite(M2_PWMH, (x-0.3*x));
 }
 else if (spd == 125 || spd == 150 || spd == 175) //20% drop in speed in right wheel
 {
 analogWrite(M1_PWMH, x);
 analogWrite(M2_PWMH, (x-0.2*x));
 }

173

 else if (spd == 200 || spd == 225 || spd == 255) //10% drop in speed in right wheel
 {
 analogWrite(M1_PWMH, x);
 analogWrite(M2_PWMH, (x-0.1*x));
 }
 else
 {
 analogWrite(M1_PWMH, x);
 analogWrite(M2_PWMH, x/2);
 }
 }

 }

 void brakeMotors()
 {
 analogWrite(M1_PWMH, 0); //Turn the motor off by shorting it to GND
 analogWrite(M2_PWMH, 0); //Turn the motor off by shorting it to GND
 analogWrite(LM_PWM, 0); //Turn the motor off by shorting it to GND
 desired_spd = 0;
 current_spd = 0;
 spd = 0;
 }

 void slowMotors()
 {
 desired_spd = 0;
 while (current_spd != desired_spd)
 {
 current_spd--;
 spd = current_spd*25;
 speedControl(dir, spd);
 delay(300);
 }
 analogWrite(M1_PWMH, 0); //Turn the motor off by shorting it to GND
 analogWrite(M2_PWMH, 0); //Turn the motor off by shorting it to GND
 analogWrite(LM_PWM, 0); //Turn the motor off by shorting it to GND
 spd = 0;
 current_spd = 0;
 }

/*
 void doEncoder()
 {
 /* If pinA and pinB are both high or both low, it is spinning
 * forward. If they're different, it's going backward.
 *
 * For more information on speeding up this process, see
 * [Reference/PortManipulation], specifically the PIND register.
 / /
 if (digitalRead(LM_EncA) == digitalRead(LM_EncB)) {
 encoderPos++;
 } else {
 encoderPos--;
 }

174

 Serial.println (encoderPos, DEC);
}*/

/* Alternate function to show detail in encoder
void doEncoder_Expanded(){
 if (digitalRead(encoder0PinA) == HIGH) { // found a low-to-high on channel A
 if (digitalRead(encoder0PinB) == LOW) { // check channel B to see which way
 // encoder is turning
 encoder0Pos = encoder0Pos - 1; // CCW
 }
 else {
 encoder0Pos = encoder0Pos + 1; // CW
 }
 }
 else // found a high-to-low on channel A
 {
 if (digitalRead(encoder0PinB) == LOW) { // check channel B to see which way
 // encoder is turning
 encoder0Pos = encoder0Pos + 1; // CW
 }
 else {
 encoder0Pos = encoder0Pos - 1; // CCW
 }

 }
 Serial.println (encoder0Pos, DEC); // debug - remember to comment out
 // before final program run
 // you don't want serial slowing down your program if not needed
}
*/

175

D. Appendix D: MatLab Controls Derivations

D.1	 Dynamics	 Derivations	
The following MatLab code was used to make the transfer functions used in creating the
controller from the dynamic equations.

%Diwheel derivation 1
syms theta phi l T F s Mb Mw m e Jb R r Jw g
Mb=30; %Mass of body
Mw=2; %Mass of Wheels
m=1; %Mass of sliding weight
e=.136; %Center of mass pendulum length
Jb=7.5; %moment of inertia of body
R=.310; %Wheel Radius
r=0.122; %sliding weight pendulum length
Jw=2.5; %moment of inertia of wheels
g=9.81; %gravity

E1=(Jb+Mb*e^2+m*(r^2))*theta*s^2-Mb*g*e*theta+m*g*(l-r*theta)-
(Mb*R*e+m*R*r)*phi*s^2+T+m*r*l*s^2;
E2=(Mw*R^2+Jw-Mb*(R-e)*R-m*(R-r)*R)*phi*s^2+(Jb+Mb*(R-e)*R+m*(R-
r)*R)*theta*s^2-Mb*g*e*theta+m*g*(l-r*theta)-m*(R-r)*l*s^2;
E3=-F+m*g*theta+m*(-r*theta*s^2+R*phi*s^2+l*s^2);
phi_sol=solve(E1,phi);
E2s=subs(E2,phi,phi_sol);
E2s=simplify(E2s);
E2s=collect(E2s,theta);

%%%%%%%%%%%%%%
E2s_theta=subs(E2s,T,0)
E2s_theta=subs(E2s_theta,l,0)
E2s_theta=collect(E2s_theta,s)
E2s_theta=collect(E2s_theta,theta)
%%%%%%%%%%%%%%%
E2s_l=subs(E2s,T,0)
E2s_l=subs(E2s_l,theta,0)
E2s_l=collect(E2s_l,s)
E2s_l=collect(E2s_l,l)
%%%%%%%%%%%%%%%%%%%%
E2s_T=subs(E2s,l,0)
E2s_T=subs(E2s_T,theta,0)
E2s_T=collect(E2s_T,s)
E2s_T=collect(E2s_T,T)

E2s_theta
 pretty(E2s_theta)
E2s_l
 pretty(E2s_l)
 E2s_T
 pretty(E2s_T)

176

%Diwheel Derivation 2
syms theta phi l T F s Mb Mw m e Jb R r Jw g
Mb=30; %Mass of body
Mw=2; %Mass of Wheels
m=1; %Mass of sliding weight
e=.136; %Center of mass pendulum length
Jb=7.5; %moment of inertia of body
R=.310; %Wheel Radius
r=0.122; %sliding weight pendulum length
Jw=2.5; %moment of inertia of wheels
g=9.81; %gravity

E1=(Jb+Mb*e^2+m*(r^2))*theta*s^2-Mb*g*e*theta+m*g*(l-r*theta)-
(Mb*R*e+m*R*r)*phi*s^2+T+m*r*l*s^2;
E2=(Mw*R^2+Jw-Mb*(R-e)*R-m*(R-r)*R)*phi*s^2+(Jb+Mb*(R-e)*R+m*(R-
r)*R)*theta*s^2-Mb*g*e*theta+m*g*(l-r*theta)-m*(R-r)*l*s^2;
E3=-F+m*g*theta+m*(-r*theta*s^2+R*phi*s^2+l*s^2);

l_sol=solve(E3,l)
E1s=subs(E1,l,l_sol)
E2s=subs(E2,l,l_sol)

phi_sol=solve(E1s,phi);

E2s=subs(E2s,phi,phi_sol);
E2s=simplify(E2s);
E2s=collect(E2s,phi)

E2s_theta=subs(E2s,T,0);
E2s_theta=subs(E2s_theta,F,0);
E2s_theta=collect(E2s_theta,s);
E2s_theta=collect(E2s_theta,theta);

E2s_T=subs(E2s,theta,0);
E2s_T=subs(E2s_T,F,0);
E2s_T=collect(E2s_T,s);
E2s_T=collect(E2s_T,T);

E2s_F=subs(E2s,T,0);
E2s_F=subs(E2s_F,theta,0);
E2s_F=collect(E2s_F,s);
E2s_F=collect(E2s_F,F);

E2s_theta
 pretty(E2s_theta)
E2s_T
 pretty(E2s_T)
E2s_F
 pretty(E2s_F)

177

D.2	 Sliding	 Weight	 Position	 Controller	
Theta Controller =
 0.2304 s^2 + 0.38 s + 1

 0.000333 s^3 + 0.0155 s^2 + 0.223 s + 1

DiWheel Model =
 -0.006003 s^2 + 1.129

 s^2 + 1.764 s + 4.742

Controlled Diwheel Model =
 -0.001383 s^4 - 0.002281 s^3 + 0.254 s^2 + 0.4289 s + 1.129

 0.000333 s^5 + 0.0147 s^4 + 0.2496 s^3 + 1.721 s^2 + 3.25 s + 5.871

