EGR 402 — Capstone Design & Presentation
Design History File — Final Report

Team Name: DiWheel

Team Members: Kari Dennis
Kevin McLaughlin
Christopher Vanjoff

Joshua Dean

Christopher Parisi

Client: Dr. Matthew Rickard
Technical Advisors: Dr. Keith Hekman and Dr. Mark Gordon

Date Submitted: Friday April 19, 2013

Table of Contents

0. ADSITACT. ...ttt ettt et b et e a e bttt et b et e h e bt et et e bt et eate b enee 5
1. Milestone 1: Problem Definition and Needs Identification............ccceeceeeiienienciienieniiienieeieenee. 6
1.1 Initial Problem Statementcoeeviiiiiriiiiiiiienieie ettt 7
1.2 CHENt INTETVIEW ..ottt ettt ettt sttt sb et ettt sae e 8
1.3 Background Information and Relative Technologyccccoovieviiieniiniiiiniieniieiecieeee 10
1.3.1 Background INfOrmationcceeeuieiieiiieniieeie ettt 10
L.3.2 TREOTY ..ttt ettt ettt et e e et e et e et e e sabeesbeessseenseeesbeenseasnseenseesaseenseannns 10
1.3.3 Relative TeChNOLOZYcccueeriieiiieiieiieeie ettt et et 11

1.4 ODJECHIVES TTEE...ccuvieuiieiieeiieeieeeit ettt ettt et ettt e et e et e e bt e sabe e st e saseenseesnseenseesnsaenseennns 14
1.5 Pairwise Comparison CRArt...........cccuieriiiiiiiiieeiieie ettt ettt eeeenbeeaee e 15
1.6 Problem DefINItionc.coiiiuiiiirieiieiecieeeie ettt sttt et st 16

2. Milestone 2: Requirements SPeCifiCatiOn...........cccuieriieriieriieniieiieeieeiie ettt eve e sneeiee e ens 17
2.1 CONSEIAINES ..ottt ettt et ettt et e ae e s bt et eat e s bt et e sbee bt enbeebee bt entesaeenbeennes 18
2.2 SEANAATAS ..evveiieieeieeee ettt st b et eh e bttt nae s 19
2.3 Requirements SPECITICATIONSccuueeiieriieeiieriieeieeriieetteeite et e eiteebeesreesteeseaeenbeessbeeseesaneans 20

3. Milestone 3: Concept Generation and Selectioncceevieeiienieeiienie e 22
3.1 CONCEPL GENETATIONeveiieiiieeiieeiie et etteeete et e ete e bt e seteeteesateesseessbeenseessseenseessseeseesnseenseennns 23
3.2 CONCEPE SELECTION ...ttt ettt ettt e et e s be et e e e aaeenbeessbeenseesnaeenseeenns 25

4. Milestone 4: Design Architecture and Detailed Designcoccveeciieriieiiienieniieeiecieeiieene 27
4.1 Desi@n ATCRITECIUIEcciieiiieeiieie ettt ettt ettt e et e st e e bt e s aeebeesaaeesseessseeseesanaans 28
4.1.1 Product Schematic With CIUSTETSccueiiiiiiniiiiiiierieeee e 29
4.1.2 GEOMELIIC LAYOULeeiiiiiiieiiiieiieeie ettt ettt et et e et e e seeeebeeseeeateenseeenes 30
4.1.3 Incidental Interaction Graph..........cccccieeiieiiiiiiieiieieeie e 31

4.2 Electrical Design ATChILECTUIEccvierieeiiieiieeieeiie et eie ettt e e e aeeeaeebeesebeeseeseneens 32
A2 T LEVEL 0 ettt bbbt a ettt beene e 32
B2 2 LeVEL 1ot bbbttt ettt ne e 33

4.3 Mechanical Detailed DESI@N.......ccc.oecviiiiieiiiiieeieecie ettt e e ens 43
4.4 Electrical Detailed DeSIZNcooviiiieiiieiiecie ettt ettt et sneesaesaae e 53

4.4.1 Hardware DESIZNcccueiiuieiiieiieeie ettt ettt ettt et ette et e st e ssbeeseesnseeseesnseenseennns 54

4.4.2 SOTIWATE DIESIZN ...oouviiiiieiieeiie ettt ettt ettt e et ebeeebeesaeeesbeeseeenbeeseesnseenseennns 60
4.4.3 DIWhEe]l CONLIOLScovuiiiiriiiiiiiiieierit ettt 62

5. MileStONEe 5: PTOtOTYPINE ..eeeuvieieiieiieiiieetieeiie ettt ettt ettt ettt e esbeeteeenbeeseesnbeesaesnseenseennns 63
5.1 Mechanical PrOtOtYPING........cccuiiriieiiieiieriii ettt ettt ettt ettt siae et eseaeeseesnaeenseeenes 64
5.2 Electrical ProtOtyPINg......cccuieiiieiiieeiieiieeie ettt et ettt ettt e s e et e saaeenbeessaeenseesnaeenseennns 81

6. Milestone 6: Testing and VerifiCation............cccecvieiieriiiiiienie ettt 94
6.1 Mechanical Component TESTINGccueeriiriiiiiieiiecie ettt ettt sae s 95
6.1.1 GUIAE WHEEISeeiiiiiiiieiieee et sttt st 95
0.1.2 LeVeliNg Set-UP....coiieiieiieeiteeiie ettt ettt ettt ae e te e s e e e e naeebeesaaeenseennns 97
6.1.3 DIIVE TTAIN .ottt sttt sttt st st b et s e beeeesanens 100
6.1.4 CONLIOIIET T@STINEccuvietieeiiieiie et eiee ettt ettt e et e ete e bt e seteebeessaeenbeessaeeseesnsaens 103

6.2 Electrical Component TESTINGcc.eecuierieeiiieniieeiieiie et esiee et esieesreeseeesereesaeeseaeeseesnneens 105
6.2.1 Wireless Receiver/TTanSImittereveevuerieriierienienieesieetesiteie et 106
6.2.2 Drive Wheel MoOtOr DITVETS. ...c.coouiiiiiiiiiiieniierieeeseeeee sttt 107
6.2.3 10A Motor Driver Arduino Shieldcocoviiiiiiiiiiniiiinieeceeeee s 110
6.2.4 TIMU SEINSOT ..ottt ettt ettt ettt et ettt s e et e sbt e s beesateebeesbeeebeesaneeas 113
6.2.5 Arduino Uno MicTOCONIIOIIET........couiiiiiiiiiiriieieiieceeeceeteeee e 115

6.3 Diwheel System TeSHNE.......cccueiiiiiiiieiieiie ettt ettt ettt e eesseeeebeenbeessaeeseesnneens 116
6.3.1 Systems INtEETAtIONeeuieiiieiieeiieiie ettt ettt e st e et eeebeesbeessaeesaesnaaens 116
6.3.2 DIivability T@SHNE. ...ccuvietieiiiiiieeiieeiie ettt ette ettt ste bt e sebeeteesebeenbeessaeensaesnnaens 119
6.3.3 Linear motor function tEStING.cceeriierieiiiieriierieeieeeteeiee e eieeete bt e seeeeeeesaeeens 123

6.4 SpecifiCations TESHINGcceeviiiiiiiiiieiierie ettt ettt see e te et e st e esseeeabeesseessseeseesnseans 125
6.5 Future Testing Plan...........ccooiiiiiiiiiiieiee ettt et ens 126
COMCIUSION ...ttt ettt et b et eat e e bt e bt eat e s bt et e st e sbe et e eatesaeenbeeanenaeenee 127
A. Appendix A: Project Management Planccoooiiiiiiiiiiiiiiniecceeeee e 128
A.1 Work Breakdown SHIUCTUIEc..coviiiiriiiiiiieniteieetereeeee ettt 129
A2 GANEE CRATT .ottt sttt ettt ettt et e be s 130
A.3 Statement 0f WOTKcooiiiiiiiii s 133
B. Appendix B: Detailed DeSIZNccueiiiriiiiiiiiiiieiieiesitereeesitee et 134

BT DIQWINES ...eeiiieiiieeiieeiieeie ettt ettt et et eetteseaeeteesateesbeessseenseesaseenseassseenseessseenseassseenseas 134

B2 SPECIIICALIONSeieiieiiieeiie ettt ettt ettt et e st e st e e bt e sabeenbeeenaeenbeessneenseas 145
B.3 Parts List and BUd@Et........cc.eoviiiiiiiiieieeie ettt 156
C. Appendix C: Arduino SKetCh..........ooouiiiiiiiiiiiiciiee e 158
C.1 Initial DIWheel PrOgram............cccooiiiiiiiiiiiiieiie ettt ettt ens 159
C.2 Updated DIiwheel Program...........cccueecuieiiieiiienieeiieiee ettt ettt aeesaeseaeens 166
D. Appendix D: MatLab Controls Derivationsccceecueeviienieniiienieeiiesiie e eve e 175
D.1 Dynamics DEITVATIONScccueeriieriieriieiiieiteeiiesteeteesteesieessteeseesaseesseessseenseessseenseassseeseas 175

D.2 Sliding Weight Position COontrollerocieiiiirieiiieiiesieeiieee et 177

0. Abstract

The diwheel has been around for centuries. At its basics, it is two wheels that rotate on
the same axis with a center chassis in between them. They have evolved from simple pedal
power to now being electrically driven with controls for stability. Most designs for diwheels
today are very simple without any stability correcting and as a result the chassis swings and
rocks every time the vehicle accelerates or decelerates. This problem is especially pertinent when
trying to mount a device onto the chassis. The team realized the problem of being able to keep
the chassis level and sought a solution.

The team performed research on related technologies on the market already that could be
used as well as the theory that would need to be known. They talked with the client to further
define what the project itself would look like and began to formulate a list of objectives that the
project would entail. The two main objectives were Marketability and Functionality. A Pairwise
comparison chart was made to prioritize the different qualities that the device should possess.
After all these steps were taken, a formal problem definition was developed. This definition
stated that the team would design a two-wheeled, durable, mobile, radio controlled vehicle that
can have different hardware, such as a camera or flashlight, mounted to it. The main chassis will
have controls built into it so that the hardware will stay level.

After the formal problem definition was made, the team created the work breakdown
structure, which outlined what steps need to be taken to finish the design process. The chart was
then fit to a timeline in the Gantt chart.

The team then began to design the device by first defining the constraints, standards, and
specifications. The only constraint was that the device would not hinder the functionality of the
bike, and the standards had to do with shipping, outlet size, and water/dust proofing. These

constraints and standards went into the specifications, which had to be quantifiable and testable.

1. Milestone 1: Problem Definition and Needs Identification

In this milestone, the design team will provide the following sections: Initial Problem
Statement, Background Information, Client Interview, Objective Tree, Pairwise Comparison
Chart, and Problem Definition. The initial problem statement says what problem the team is
trying to solve. The background information is the information necessary to develop an answer.
The client interview subsection is a report of how the interview with the client went in discussing
the problem definition and the project as a whole. The objective tree is the graphical display of
what objectives the team wants to accomplish and all the pieces necessary in completing such
task. The pairwise comparison chart is a method used to determine the priority of different
qualities that we want the product to have. Finally, the problem definition is the compilation of

all of these pieces in a more elaborate version of the problem statement.

1.1 Initial Problem Statement

The design team was given this problem statement from the client with the motivation to
improve on the previously attempted projects. The project is being built with military/police
application in mind. The following problem statement stands as the original problem with the
most basic guidelines to solving it. This statement will be the foundation of the project. It is later

updated in section 1.6 based upon the information found in sections 1.2 through 1.5.

The client wants to have a two-wheeled, durable, mobile, radio controlled vehicle that
can have different hardware, such as a camera or flashlight, mounted to it. The main chassis

needs to have controls built in so that the hardware will stay level.

1.2 Client Interview

We met with our technical advisor in order to get a grip on what technical aspects we
would need to get comfortable with in order to complete this project. This included different
existing technologies we will encounter as well as the kinds of equations we would need to solve
and understand in order for our device to work.

We also set up a meeting with our client to give us a chance to introduce ourselves to
who we were working for. It was our goal to clarify the project with him and let him know that
we were determined and willing to complete this project in an effective and timely manner. One
of our goals related to the client meeting was to gain personal contact with the client and become
comfortable with him as he becomes comfortable with us. Another main topic of this discussion

was to clarify some concerns we had with the project and get a clear direction.

Our Client is Dr. Matthew Rickard, Mechanical Engineering Professor at California
Baptist University. We will meet with him for information and conformation throughout the

entire project.

Dr. Rickard: So what is the project you will be designing?
Team DiWheel: We will be designing a diwheel. We would like to build a full scale prototype

that uses controls to operate it.

Rickard: How would it be controlled?
Team: We were thinking we would have a joystick for each wheel to allow us to go forward and

backward and would also allow us to rotate.

Team: Based on our budget, do you suggest we design a full scale or scaled version of the
diwheel?

Rickard: It will depend on the materials. It may be difficult to find a large wheel for a full scale.
Research the cost of materials and also availability of parts, such as the wheel, to determine

which design route to take.

View examples of diwheels on YouTube

Rickard: What will you implement that will make your design unique and different from
diwheel projects that have already been done?

Team: Building a scaled model might be better if we want to add a unique feature. We could
focus on designing a functional scaled version and then add new features to it. We could
implement suspension and build a jump or track for the diwheel. Adding a safety feature could

also be a unique aspect of our design.

10

1.3 Background Information and Relative Technology

This subsection provides the research that the team has done that is needed to start the
project. It includes models and technologies already out in the market that provides similar
functions. It also provides the physics and science behind the product itself. For this project in
particular, that would include dynamic equations for the forces on the diwheel such as the

rotation of the wheel and the center of mass of the chassis.

1.3.1 Background Information

The diwheel (also known as a dicycle) has been around for almost two centuries, this
recreational vehicle is constructed of two large outer wheels that are located side by side. These
wheels encompass the inner frame where the driver sits, and are usually powered by two electric
motors. Sloshing and tumbling have been two major issues with the diwheel since its invention.
Sloshing refers to the oscillating motion the inner frame experiences during transportation due to
the offset center of gravity. Tumbling is when the inner frame completely flips over with
extreme braking and accelerating. Both of these issues can be reduce with the use of damping
feedback controls. There has not been an enormous market for these vehicles yet because they
have not been legalized for road use and the feedback control system has not been refined to a

marketable state.

1.3.2 Theory

The first step to solving how a diwheel functions is to determine the dynamics behind its
motion. The control system can only be started after the equation of motion is determined.
There are many equations that can describe the motion of a diwheel and they have to be broken
up into several sub equations for simplicity. The diwheel system is comprised of two degrees of
freedom in the xy-plane. The system also has three coordinates:

0 is the rotation of the inner frame about the z-axis

¢oL=pR=¢ which is the rotation of the outer wheels about the z-axis

x is the displacement of the whole diwheel as a system relative to the earth

11

This is a diagram that shows how the different variables related to the physical structure of the

diwheel.

Dynamic equations need to be derived using the listed variables to solve for velocities,
kinetic energies, potential energies and the Euler-Lagrange equations. All of these formulas
comprise the motion of a diwheel and will be vital when programming the control systems.

Apart from the equations of motion are the equations that are relating to the input
velocity and input torque of the motors that are going to power the diwheel. Permanent magnet
DC motors with brushes are a common type of electric motor that will serve the purpose of
powering the diwheel. The equations that are derived for the electric motor are used alongside

the equations of motion to help create a dynamic control system.

1.3.3 Relative Technology

Although the diwheel has been around for a couple hundred years, there is still not an
abundance of the actual creation roaming the streets. These vehicles have been limited to
hobbyists and student design projects. There is one design that has gone above and beyond what
anyone else has done with the diwheel. There was a project that was created by the University of
Adelaide that constructed a full sized diwheel equipped with suspension and powered by DC
electric motors. They have also shown their equations of motion and briefly discussed the

control system they used. There are some other models that are full sized, but they are human

12

powered. Most of these designs have a through axel that connects both wheels and allows the
frame to hang underneath the axel. The few designs that are available to look at will allow our
team to gain knowledge and in the construction of our own design.

Simple electric motors are found in many different devices that are used every day. The
size and functionality of electric motors range from tiny brushless DC motors used in artificial
hearts to enormous AC motors that are used in hydroelectric dams. Electric motors are a useful
piece of technology for the consumer, and also very practical for industries that need mechanical
energy without the use of combustion engines.

Microprocessors are the future of technology because they are a very important
component when constructing computers. Mechanical devices such as vehicles, robots and
machines alike rely heavily on this type of technology because there are many physical
movements that need to be fed though a microprocessor and then processed so that the right
mechanical movement can be implemented.

Other diwheel designs have used various technologies to implement their controls. The
diwheel engineered by the University of Adelaide used dSpace rapid prototyping hardware for
their controls. Another diwheel team used a wireless router connected to a microcontroller for
their control system. Microcontrollers are useful in bringing together all the inputs and outputs in
order to gain control of the system. With a diwheel, the microcontroller will control the electric
motors and the functionality of the device. It will also contain the algorithms for controlling the

slosh of the device.

13

Sources:

Dicycle, Wikipedia, Mediawiki, page last modified October 3, 2012, site visited October 10,
2012 <http://en.wikipedia.org/wiki/Dicycle>

Control of an electric diwheel, B. Cazzolato, J. Harvey, C. Dyer, K. Fulton, E. Schumann, C.
Zhu and Z. Prime. University of Adelaide.
<http://data.mecheng.adelaide.edu.au/robotics/projects/2009/EDWARD/DiwheelPaper v

3.pdf>
EDWARD - Electric Diwheel With Active Rotation Damping, University of Adelaide, pd forms

website system.

<http://sites.mecheng.adelaide.edu.au/robotics/robotics_projects.php?wpage id=44&title

=60&browsebytitle=1>

Cazzolato, Ben, Dr. "University of Adelaide Undergraduates Design, Build, and Control

an Electric Diwheel Using Model-Based Design." MathWorks.com. N.p., 2012. Web. 08 Oct.
2012. <http://www.mathworks.com/company/newsletters/articles/university-of-adelaide-
undergraduates-design-build-and-control-an-electric-diwheel-using-model-based-
design.html>.

Cazzolato, Ben S., Dr., Chris Dyer, Kane Fulton, Jonathon Harvey, Evan Schumann, Charles
Zhu, and Luke Francou. "Section Navigation." Mecheng.adelaide.edu. The University of
Adelaide, 12 Dec. 2010. Web. 08 Oct. 2012.
<http://sites.mecheng.adelaide.edu.au/robotics/robotics projects.php?browsebytitle=1>.

"Diwheel." Sariel.pl. N.p., n.d. Web. 08 Oct. 2012. <http://sariel.pl/2009/01/diwheel/>.

"Diwheel Exploror." LEGO.com MINDSTORMS. N.p., n.d. Web. 08 Oct. 2012.

<http://us.mindstorms.lego.com/en-us/Community/NXTLog/DisplayProject.aspx?id=37b7cc3t-
02e3-4258-a4fb-cce6ea91b9la>.

Mitchdenda. "Rutgers MAE Senior Design 2012 Autonomous Di Wheel Robot." YouTube. N.p.,
01 May 2012. Web. 08 Oct. 2012. <http://www.youtube.com/watch?v=WGyEQHuc8ts>.

14

1.4 Objectives Tree

An objectives tree is a flow chart of each objective that a certain project needs to
accomplish. For each objective on the tree there are subsections that list what the objective must
cover. For this specific project there are two main objectives, Functionality and Marketability.
For each objective there are subcategories that the objective needs to address. An example of
subcategories for this project is for Marketability; it needs to address Durability, Versatility,
Mobility, Portability and External Hardware Attachment.

Yersatile
Mobile
J Portable

External Hardware Attachment

Safe

Diwheel Remote Controlled

Controls ,L Feedback to Maintain Stability

Electrical 5 =
| Leveling

-) Structural

Mechanical _[_ Leveling

Powertrain

Functionality

15

1.5 Pairwise Comparison Chart

As a team, we understand the importance of establishing the priority of different
attributes of the device. This is another form of communication among team members by
creating a standard that all members will be held to. If there is ever a situation where one
attribute will have to be chosen over another, this chart will allow for a quick, decisive decision
that will not be disputed. This chart works by comparing one attribute against another and
deciding which one has greater priority. If the attribute on the left hand side has greater priority
than the attribute in comparison above, a 1 is marked in the box. If it is not of greater priority, a 0
is marked in the box. After all the boxes are marked, the points are added from left to right. The
attribute with the highest score has the highest priority.

Weight | Maintenance | Mobility | Safety | Leveling | Cost TOTAL
Weight 0 0 0 0 0 0
Maintenance | | 0 0 0 0 1
Mobility 1 1 0 0 0 2
Safety 1 1 1 1 1 5
Leveling 1 1 1 0 0 3
Cost 1 1 1 0 1 4

Listed below are the attributes and their descriptions in order of greatest to least importance.

5) Safety- This attribute covers the safety for the user of the diwheel. In order to keep the user
safe there must be an emergency shut off on the remote. Also, if the signal to the diwheel is lost
it will automatically shut off.

4) Cost— This attribute entails the cost to build the final product which affects the retail price.

3) Leveling — This attribute is the ability of the chasis and attached hardware to stay level while
the diwheel is in motion.

2) Mobility — This attribute covers the diwheel’s multidirectional specifications. The diwheel
will need be able to travel forward, backward, and also turn in order to achieve optimal mobility.
1) Maintenance — This attribute covers two main things, durability and repair. The main concern
is making the device durable enough to handle obstacles, jumps, and various terrains. This
attribute also entails if and how repairs will happen.

0) Weight — This pertains to the weight of the diwheel as an entire vehicle. In order to maintain

reasonable power consumption and speed, the diwheel will need to be an appropriate weight.

16

1.6 Problem Definition

The problem definition is a summation of what our product is going look like and a basic
over all representation of what the product should be able to do. These aspects are going to be
the guidelines of the project and will give a good idea of how the final product should perform.
It will merely be an outline and will not give exact specifications on how the product should

perform.

After meeting with the client, we have developed the following problem definition:

The problem that we have been given to solve is to design a two-wheeled, mobile,
durable vehicle on which different hardware can be mounted and kept level. Diwheel mobility
should include the ability to move forward, backward, and in circles using some form of radio
control. For vehicles with two wheels in parallel side by side, the problem comes in keeping the
center chassis level. Our project should incorporate a unique way to keep the chassis level while
in motion. Because the only connection between the chassis and the wheels is through the drive
train, adding any torsional correction for stability will take away from the power being delivered
to the wheels. Our team must design a way to incorporate stability without taking away from the

power.

17

2. Milestone 2: Requirements Specification

This milestone includes the first subsections about specifications for the device.
Specifications have to be qualities that can be tested and quantified in a repeatable manner.
These specifications are driven by three things: Objectives, Constraints, and Standards.
Objectives are found in the problem definition and help form what specifications can be made.
Constraints are specifications that are driven by the client. Standards are specifications that are
driven by government standards. Every specification will fall into at least one objective and will

remain inside the bounds of constraints and standards.

18

2.1 Constraints

Constraints are client driven specifications. The following categories of constraints were
emphasized by the client: weight of the components and attached hardware, velocity of the
device, impact resistance of the device, economics of the project, acceleration of the device,
leveling of the chassis, battery longevity, and safety of the device. Each category is coupled with
an exact specification that the client is looking for in the device. Below are the exact

specifications that the client is looking for in the end product.

The total weight of the device will not exceed 30kg and will have a target
weight of 25kg so that it can be easily transported by no more than two people. Each
component, mechanical and electrical, will have a target weight of 15kg.

The velocity of the device will exceed 7.3m/s, the maximum running speed of a human
being. The device should be able to catch a human being running at full speed.

The device will be able to drive a minimum of 2 m/s on cement, asphalt, and short grass
on a 5 degree incline. It will not be designed to traverse all types of terrain.

The device should be able to withstand a drop from 0.5 meters without experiencing any
difficulties performing its functions.

The cost of remote controlled diwheel must be within the given budget of $1000. The
design will be based upon the cost of materials and components.

The device should be able to accelerate to 7.3 m/s, in no more than 3 seconds with a
target of 1.5 seconds. This acceleration will be on asphalt, not grass where it may decrease.

The leveling of the chassis is part of the unique design goal. When starting the chassis
should not exceed an angle of 15 degrees and when stopping from 7.3 m/s, the chassis should not
exceed an angle of -15 degrees. This will keep the attached hardware level while in motion.

The batteries will be rechargeable and be able to last for at least 20 minutes from a fully
charged state. This time will allow for short demonstrations of the device.

The safety of the device should include a failsafe unit in case of frequency disturbance or
if the receiver becomes out of range; the device should shut down when an error occurs.

The device will be able to be controlled within a minimum range of 100 meters so the

user can see the device and be able to safely operate it.

19

2.2 Standards

Standards are specifications that are driven by government regulations that the device has
to follow. The product will utilize wireless communication through radio frequency. The design

team will follow the IEEE and FCC standards for frequency range when designing the device.

The IEEE C95.1-2005 standard for “Safety Level with Respect to Human Exposure to
Radio Frequency and Electromagnetic Fields” states that ranges should be between 3 kHz and
300 GHz. Our device will operate within this range in order to keep the user and bystanders in

close proximity to the device safe from hazardous frequencies.

To protect the device against harmful water and dust damage the Ingress Protection code

54 was chosen. This code states that the device will be water and dust resistant.

20

2.3 Requirements Specifications

The requirement specifications section is designated to introduce specific design
requirements that the product will strictly follow. There are boundaries that have been
established in order to keep the design following a specific path. There is a table that illustrates
the specification that the design must abide by, a justification or reason why this specification
was put in place and finally the objective that the specification will support. A list of the product

objectives will also be listed for a quick comparison.

Objectives

Durable

Manoeuvrability

Mobile

Portable

External Hardware Attachment
Remote Controlled

Electrical Leveling

Structural

O© 0 9 AN N B~ W N~

Mechanical Leveling

[a—
S

Drive Train

[u—
[u—

Safety

[a—
\S]

Price

21

Objective | Specification Justification
The mechanical components of the device will not The completed device will need to
3,4 exceed a weight of 15kg and will have a target be easily transported by a
weight of 10kg. maximum of two people.
The electrical components of the device will not The completed device will need to
3,4 exceed a weight of 15kg and will have a target be easily transported by a
weight of 10kg. maximum of two people.
The vital components of the device need to be water 3:;?8?:;122 11? Z(;rl;: tglaterzagfl dust
1,11 and dust resistant and follow code IP54 (Ingress . . St property
. function while driving in wet or
Protection Code). .
dusty conditions.
The maximum velocity of the device will exceed the | The device will be able to catch up
2,3,10 maximum running velocity of a human being, 7.3 to a human being running at full
m/s. speed, approximately 20 mph.
The vehicle should be designed to
be able to traverse rough terrain.
18 The vehicle should be able to sustain a drop from 0.5 | As a design goal we want it to be
’ meters and not lose any function. able to be dropped and fall in any
orientation and still maintain
functionality.
12 The target price for production of this device is This project has been given a
approximately $1000. budget of $1000.
The device should be able to accelerate to top speed, The deV1ce: should b.e able t(.) reach
. . full speed in an equivalent time
2,3,10 7.3 m/s, in no more than 3 seconds with a target of
that a human would reach top
1.5 seconds. .
sprint speed.
The device will be able to hold external hardware The weight of the hardware shguld
2,3,5,8,9 . . . be no more than half of the weight
with a maximum weight of 7.5 kg)
of the device.
The device chassis should not exceed a maximum The device chass%s should stay
) level throughout its use. The
angle of 15 degrees when starting from a stop and .
. . purpose is to create a platform that
2,3,10 accelerating straight forward. It also needs to not
. stays level so that hardware such as
exceed a maximum angle of 15 degrees when
stopping from 10 kph a camera can be attached to the
' chassis and kept level.
The bat.terles will be rechargeable and able to power The device will have the battery
the device for at least 10 minutes from a fully .
6,7 . . capacity to put on short
charged state. The target longevity of the batteries ;
. . demonstration shows.
will be 20 minutes.
The device will be equipped with a failsafe unit in Ir?let isatiloen dfe(izriggcii;nfi fs?;éiafeThe
6 case of battery loss, frequency disturbance or if the Y

receiver becomes out of range

device will shut down if an error
occurs.

22

3. Milestone 3: Concept Generation and Selection

This milestone consisted of two subcategories, the first being our concept generation and
the second being our concept scoring matrix. The concept generation sub category is an essential
step in considering a multitude of different design options that are realistic as well as unrealistic.
It is here that creativity is allowed to flow. After obtaining a number of design alternatives from
the morphological chart, there needs to be an organizational process that rates the different
concepts that have been previously established. A concept scoring matrix will be used to do this.
This chart will allow an outside perspective of how each concept compares to each other and will
determine an ideal model to prototype. This milestone is critical so that no design option will be
left out. Finally this process will determine what ideas will advance onto the next step in the

design process and which designs will not.

23

3.1 Concept Generation

The concept generation is a key component in the design process because it gives the
opportunity to have a multitude of different designs that capitalize on a variety of different
shapes, materials, fasteners and devices. Two morphological charts were used to organize all of
the different ideas. One chart was the hardware aspects of the design and the other being the
materials aspect of design. Different design concepts can be created by mixing and matching the
different design features. By creating these charts it was ensured that no design would be left
unaccounted for and all possible designs would be analyzed.

Hardware Morphological Chart

Drive train Direct
Electric Motor AC
Controls FPGA PSoC

Pendulum Rotating Flyw

Dynamic Levelin

y - - g I R O
Statlc Leve"ng \1 \} I \‘ “\ \i \H\ h\ H ‘ H\ \} m\ \;} \i \‘ ‘
Leveling (Measurement)

Laser Separate

Our first prospective design is highlighted in the hardware morphological chart as the
green design. This design will be driven by wheel to wheel contact powered by a DC motor. It
will be controlled by the Arduino Uno Controller in order to handle the mechanical and electrical
inputs and outputs of the control system. This design uses a counterweight slider and integrated
leveling sensors to help the chassis stay level. This concept will be cost effective, lightweight,
and capable of controlling the “sloshing” movement of the chassis.

The second design is highlighted in blue. This model will have a chain drive train and be
powered by a brushless DC motor. The MultiWii Pro controller will be used for the controls
along with an infrared laser to measure the leveling. These will be used in correspondence with
a counterweight slider for static leveling and a rotating flywheel for dynamic leveling.

The third design is highlighted in purple. This design will have a belt drive train powered
by an AC motor. The static and dynamic leveling will be controlled by an FPGA controller.
Clips will be used to mount the hardware to the chassis. A high strength belt will be used in
unison with an AC electric motor to apply mechanical energy for the device. The control system
will be handled by a Field Programmable Gate Array (FPGA) and stand alone sensors which will

interact with the control algorithm programmed on the FPGA.

24

The fourth design is highlighted in yellow. This design will be driven by direct drive

train, meaning straight from the shaft of the DC motor to the wheel. The device will be driven

from a direct connection between a DC motor and the axel. A Programmable System on Chip

(PSoC) will be used with a laser sensor to control the leveling as well as control of the design.

The leveling system will be a rotating flywheel for the dynamic leveling.

Materials Morphological Chart

Material (Housing) Aluminum Plastic Mold Plexiglas
Shape (Housing) Cube | TriangularPrism| Cyinder | Sphere B
Material (Chassis) Aluminum Steel Plastic Wood
Shape (Chassis) Platform(Swing) |Rectanglular Prism Triangular Prism

Hardware Attachment Clips Clasps Bolts

Our first prospective design for the materials morphological chart is highlighted in
orange. The housing of the diwheel will be made from a plastic mold that will be in the shape of
a triangular prism. The chassis material will be aluminum and will also be in the shape of a
triangular prism. For the hardware, it will be attached with bolts straight onto the chassis.

The second design is shown in purple. The housing will be built out of Plexiglas and put
in a cube shape. The chassis will be a platform made of steel. The hardware will use clasps to
attach and detach from the chassis.

The third design is highlighted in pink. This design will have a housing made of
aluminum in the shape of a cylinder. The chassis of the diwheel will be a plastic rectangular
prism that will use clips to attach external hardware to it.

The fourth prospective design is highlighted in blue. The housing of the diwheel will be
made from carbon fiber that will be in the shape of a triangular prism. The chassis will also be

made of carbon fiber in the shape of cylinder. The hardware will be attached using suction cups.

25

3.2 Concept Selection

The concept scoring matrix is a chart that is used to categorize and compare the different
concept ideas that were created in the morph chart. Criteria were determined based on the
project objectives. These criteria where then assigned a weight in order of their importance in
regards to the problem definition. Each concept design was then rated in each of the different
criteria categories and then given a score. This chart will allow us to determine how each design
ranks compared to one another and whether or not the design should be developed.

Hardware Concept Scoring Matrix

Concepts
Concept 1 _ Concept 3 Concept 4

Criteria Wt | Rating |Score| Rating | Score| Rating |[Score| Rating | Score
Weight 5% 4, 0.2 4 0.2 5] 0.25 5/ 0.25
Maintenance | 10% 5/ 0.5 3 0.3 3| 0.3 3 0.3
Mobility 15% 4.5 0.68 45| 0.675 4.5 0.68 45| 0.675
Safety 30% 4, 1.2 4 1.2 4, 1.2 4 1.2
Leveling 17% 5] 0.85 5/ 0.85 3] 0.51 3| 0.51
Cost 23% 5] 1.15 1.5| 0.345 2| 0.46 3| 0.69

Total 4,575 3.57 3.395 3.625

Rank 1 2 4 3

Continue? Develop No No No

The first concept scoring matrix scored the hardware of the design. Concept 1 one was
selected for development because it received the highest score in the scoring matrix. The top
criteria for the matrix include safety, cost, and leveling. According to the above chart, concept 1
received high scores in each of these important categories. The device may be used for a
military or police application so keeping the chassis level will be of high importance. Safety will
receive a high score due to the fact that it will have a plastic housing. This design received a
high score for cost because it is estimated to have a relatively low cost to prototype compared to
the other conceptual designs. Using the Arduino Uno to control the leveling gave Concept | a
high ranking because it is a powerful cost effective device. The mechanical aspect of leveling,
achieved with a counterweight slider, will be very efficient and require low maintenance. This
design received a high score for weight because the components used in the system are fairly

light in weight.

26

Material Concept Scoring Matrix

Concepts
Concept A Concept B Concept C d

Criteria Wt | Rating |[Score| Rating | Score| Rating |[Score| Rating | Score
Weight 5% 4] 0.2 2 0.1 5| 0.25 5| 0.25
Maintenance | 10% 5/ 0.5 5 0.5 5 0.5 5 0.5
Mobility 15% 5| 0.75 5| 0.75 5| 0.75 5| 0.75
Safety 30% 5 1.5 4 1.2 41 1.2 4 1.2
Leveling 17% 5| 0.85 5| 0.85 5| 0.85 5| 0.85
Cost 23% 5| 1.15 4|1 0.92 4| 0.92 1| 0.23

Total 4.95 4.32 4.47 3.78

Rank 1 2 4 3

Continue? Develop No No No

The second concept scoring matrix scored the material and shape of the design. Concept
A was selected for development because it received the highest score in the matrix. Weight
received a high score because the material chosen was lighter in weight. Maintenance scored
high because the material and shape chosen will not cause many breaks and failures. Mobility
scored high because the material is light making the device more mobile. The shape also yields
more mobility. Safety scored high because the material chosen does not cause any safety issues
like sharp metallic corners. Leveling scored high because the material and shape will make
leveling easier. Finally, cost scored high because the material chosen is not very expensive.
Careful analysis of this concept how it compares to the project objectives lead us to choose

concept 1A for further development.

27

4. Milestone 4: Design Architecture and Detailed Design

This is the last milestone deliverable and contained most of what the actual design was
going to look like. This milestone had the most detail and required the most amount of work
because precise and detailed CAD drawings needed to be drawn. Again there were two
subcategories, the first being design architecture and the second being detailed design. The
design architecture was necessary in order to visually and technically see how the
subcomponents would fit together as a final assembly. This step ensured that there would be no
physical, mechanical or electrical conflict between components. After the all of the bugs were
flushed out from the design architecture, inauguration of the detailed drawings could begin. This
is where everything came together and the first prototype could be visually referenced. CAD
parts and assemblies were created to exact dimensions; this was the first step in creating an

actual prototype.

28

4.1 Design Architecture

The design architecture is an important step to help orientate the different components of
the entire assembly. It helps in visually representing were each piece will be located and how
each piece will interact with one another. A product schematic with clusters was created in order
to break up the entire design into subcategories and document how they related to each other.

An incident interaction graph was also a requirement for the design architecture. This was a
graph that showed the different components of the product and what potential problems might
occur due to their interaction with each other. Three main components include in the design are
the Controller, the Chassis, and the Wheels. The relationship between these three components

can be seen below in the following subsection.

29

4.1.1 Product Schematic with Clusters

Controller
Take input Send signal
Chassis
Electronics Battery
Receive signal
Gyroscope | Supply power
measurement Compute signal === Distribute signal
Leveling Motor
Turn motor Slide weight motor turns
Wheels
Wheels apply torque to ground

The Product Schematic with Clusters is a graphical represemtation of the flow of
information and energy while also representing the physical interaction. The design is broken up
into clusters that have their different function defined inside. The main clusters that we have are
the controller, the chassis and the wheels. The chassis is also further broken down into
electronics, battery, leveling, and motor. As seen below, the black lines denote the transfer of

information, and the dotted lines represent the transfer of power.

4.1.2 Geometric Layout

The Geometric Layout is graphical layout of what we expect our design to resemble.
Included in the Geometric Layout is a physical representation of the different clusters that are
defined in the Product Schematic with Clusters. This representation is not any final layout or

design, but just a way for the general layout and interaction to be visualized.

30

4.1.3 Incidental Interaction Graph

| Remote Control |

31

Connection Loss [
| Controller | Wheels I
Short Circuit ire Disconnect Miscommunication Slipping
I Electronics } l | Motor l
Power Loss
Battery : { Leveling l

Power Loss

The Incidental Interaction Graph demonstrates what can go wrong for each interaction

between each cluster. Some examples of things that can go wrong are loss of signal, slipping

between the motor and wheels, and short circuiting. By brainstorming for what can go wrong, we

can attempt to plan ahead to ensure that these things do not happen.

32

4.2 Electrical Design Architecture

The design architecture describes the modules and how they are connected together to
form the complete system. This section describes the decomposition and functionality of each
component. The Design Architecture is important because it shows a visual of theoretical
connections. This sections describes and shows the components, how they are connected, and the
interfaces between them. The main components for the electrical side of the design architecture
are the microcontroller, wireless communication chips, Inertia Measurement Unit, and the H-

bridge. These components are described in the following sections.

4.2.1 Level 0

The diwheel will be remotely controlled by the user. As the user interacts with the
controller, the diwheel will respond and move accordingly. This is the highest level of the design
and shows the basic interaction between the user and the response of the diwheel. A diagram of
this top level can be seen in Figure 4.1.1 and an overview of the functionality, inputs, and

outputs can be found in Table 4.1.1.

User Interaction —_— Diwheel
w/ Controller Hardware S —— Movement

Figure 4.2.1: Level 0 Diwheel Functionality

Module Hardware

-Directional data from user’s controller (forward, backward, left, right)
Inputs -Current inertial data from diwheel (leveling)
Qutputs A voltage to control direction of DC motors

Using the data received from the user’s controller and the current status
of the diwheel’s inertia, the control system will output a positive or
negative voltage to each DC motor in order to make the diwheel move as
Functionality | the user instructs.

Table 4.2.1: Diwheel Functionality

33

4.2.2 Level 1

Going further down into the design, level 1 describes the functionality of the hardware
and its modules. As the user interacts with the controller, the data is wireless transmitted to the
receiver on the diwheel. Once received, the data is passed to the microcontroller. The
microcontroller accepts the user’s commands as well as the Inertial Measurement Unit (IMU)).
The program in the microcontroller will then determine the needed output to the electric motors
based on the current inertia of the diwheel and user’s commands. The output from the
microcontroller will be passed through an H-bridge and then to the DC motors. The diagram of

this level can be found in Figure 4.1.2.

User Interaction
w/ Controller

I
v

Wireless Transmitter

v

Wireless Receiver

v

IMU — Microcontroller

() v

Motor Drivers

¥

DC Motors

|
\ 2
(Diwheel }

L Movement

Figure 4.2.2: Level 1 Hardware Functionality and Modules

34

Wireless Receiver
Wireless Inventors Shield for Arduino

RFD21815

For the wireless receiver, we have chosen to use the Wireless Inventors Shield for

Arduino. This device can be easily attached to the Arduino and allows for up to a 5001t range.

This shield comes equipped to receive inputs from the transmitter without the need for

initialization and setup. A photograph of this module can be found in Figure 4.1.3. This module

is attached directly to the Arduino so the inputs are already configured to work. A detailed

schematic of this module can be found in the Detailed Design portion of the report.

Module Wireless Receiver
Inputs Data Transmitted from the Wireless Transmitter
Outputs Data which described the user’s commands
The wireless receiver will receiver the data provided by the wireless
Functionality | transmitter which is the user’s commands.

Table 4.2.2: Wireless Receiver Functionality

Figure 4.2.3: Wireless Inventors Shield for Arduino

http://www .kickstarter.com/projects/1608192864/open-source-wireless-inventors-shield-for-arduino
http://www.opensourcerf.com/rfd21815-wireless-inventors-shield-for-arduino.html

35

Wireless Transmitter
Wireless RF USB Dongle
RFD21807

For the wireless transmitter, we have chosen to use the Wireless RF USB Dongle. This
device is created by the same company as the Wireless Inventors Shield and will be easily
interfaced. This USB dongle will accept user serial input data from the HyperTerminal on the
PC. The device also has a range of 500ft. A photograph of this module can be found in Figure

4.1.4. A detailed schematic of the wireless transmitting chip can be found in the Detailed Design

portion of the report.
Module Wireless Transmitter
Inputs Serial Data From the Controller (PC)
Outputs Data Transmission
The wireless transmitter will take the User’s Control entered from the
Functionality | PC, and transmit the data wirelessly to the receiver.

Table 4.2.3: Wireless Transmitter Functionality

Figure 4.2.4: Wireless RF USB Dongle

http://www kickstarter.com/projects/1608192864/open-source-wireless-inventors-shield-for-arduino
http://www.opensourcerf.com/rfd21815-wireless-inventors-shield-for-arduino.html

36

Microcontroller
Arduino Uno R3
DEV-11021

For the microcontroller, we have selected the Arduino Uno as our component to handle
all calculations and data flow. The Arduino Uno is an affordable yet powerful microcontroller
that is easy to program and interface with the other electrical components. We will be using the

Arduino to handle all leveling related calculations as well as control of the DC motors.

Module Microcontroller

User input from wireless receiver
Inputs Inertia data from IMU sensor
Outputs Voltages for controlling Motor Drivers

The microcontroller will gather the input from the user as well as the
feedback from the IMU sensor and determine what the needed voltage
Functionality | for the DC motors will be.

Table 4.2.4: Microcontroller Functionality

o © NOWQ‘MNH“‘
t [' ¥
DIGITAL (PWM~) F &

. OO UNO)

* ARDUINO 0%

¥ oo oLy
NS WWW . ARDUING.CC ~ MADE IN ITALY

Figure 4.2.5: Arduino Uno R3 Front

http://www.arduino.cc/en/Main/arduinoBoardUno

3v3 sv Vin D13
Power
w4 RST D12 fom
i AREF D11 ==
— 0RreF Arduino 1o = Reward sehsor
i N/C D9 \
3 D8 p=— initTrial Switch
3 D7 \
>
3 pe |
g |
= Ds e
— A g‘ D4
— Al D3 =
-t ? Cue Light
A2 5 D2 Green
— a3 8 D1 =
5
— = Ll R1 R2
A4 g Do 10ka Ba TN
—t A5 SCL

AAA

GND

-_— Made with [Fritzing.org

Figure 4.2.6: Arduino Uno Block Diagram

http://www.sciencedirect.com/science/article/pii/S0165027012003846

Name Direction Description
Reset Input Resets Microcontroller When LOW
AREF Output Analog Input Reference Voltage
IOREF Output Input/Output Reference Voltage
3.3V Output 3.3V Output
5V Output 5V Output
GND Input Common Ground
GND Input Common Ground
GND Input Common Ground
A0 Input Analog Input 0
Al Input Analog Input 1
A2 Input Analog Input 2
A3 Input Analog Input 3
A4 Input Analog Input 4
AS Input Analog Input 5
D0 (RX) Either Digital Pin 0 (Receive serial data)
D1 (TX) Either Digital Pin 1 (Transmit serial data)
D2 Either Digital Pin 2
D3 (PWM) Either Digital Pin 3
D4 Either Digital Pin 4
D5 (PWM) Either Digital Pin 5
D6 (PWM) Either Digital Pin 6
D7 Either Digital Pin 7
D8 Either Digital Pin 8
D9 Either Digital Pin 9
D10 (PWM) Either Digital Pin 10
D11 (PWM) Either Digital Pin 11
D12 Either Digital Pin 12
DI3 Either Digital Pin 13

Table 4.2.5: Arduino Uno Input/Output

38

Motor Driver (For 250W Motors)
Pololu High-Power Motor Driver 24v23 CS
Pololu Item #1456

A motor driver is needed to control the speed and direction of the DC motors. We chose
the Pololu High-Power Motor Driver because of its capability to handle high power. The driver
also contains a PWM signal input which allows the control of the motor speed. The motor driver
has a high power side and a lower power digital side. The digital side uses the output from the

Arduino and the power side handles the high power from the batteries to the motors.

Module Motor Driver (250W Motors)

PWM signal from Microcontroller
Direction signal from Microcontroller
Inputs 24V From Batteries

Outputs Voltage to control speed and direction of DC motors

The motor driver will take in the output voltage of the microcontroller
and output the correct polarity to the DC motors. Controls the DC motors
to go forwards or backwards. The PWM signal controls the average

Functionality | voltage allowed to pass through to the motors which controls the speed.
Table 4.2.6: Motor Driver (23A) Functionality

Figure 4.2.7: Pololu High-Power Motor Driver

http://www.pololu.com/catalog/product/1456

Q O

& 5

w >
20 |
NS T

39

V+

5V (out)
VCS
GND
CS

FF2
FF1
RESET
PWMH
PWML
DIR

| GND

1y

I

IS Rl L) e

Optional CS capacitor GND GND

Figure 4.2.8: Pololu High-Power Motor Driver Pins

http://www.pololu.com/catalog/product/1456

PIN

V+

5V (out)

VCS
GND
Cs
OUTA
ouTB
PWMH

PWML

DIR

RESET
FF1
FF2

Default State

LOw

HIGH

LOwW

HIGH
LOW
LOW

Description

This is the main 5.5 — 40 V (absolute max) motor power supply connection, which should typically be made to the
larger V+ pad. The smaller V+ pads along the long side of the board are intended for power supply capacitors, and
the smaller V+ pad on the logic side of the board gives you access to monitor the motor’s power supply (it should
not be used for high current).

This regulated 5V output provides a few milliamps. It can be shorted to VCS to power the current sensor. This
output should not be connected to other external power supply lines. Be careful not to accidentally short this
pin to the neighboring V+ pin while power is being supplied as doing so will instantly destroy the board!

Connect 5 V to this pin to power the current sensor.

Ground connection for logic and motor power supplies.

ACS714 current sensor output (66 mV/A centered at 2.5 V).

A motor output pin.

B motor output pin.

Pulse width modulation input: a PWM signal on this pin corresponds to a PWM output on the motor outputs.

Control input that enables coasting when both PWML and PWMH are low. See the “motor control options” section
below for more information.

Direction input: when DIR is high current will flow from OUTA to OUTB, when it is low current will flow from OUTB
to OUTA.

The reset pin, when pulled low, puts the board into a low-power sleep mode and clears any latched fault flags.
Fault flag 1 indicator: FF1 goes high when certain faults have occurred. See table below for details.
Fault flag 2 indicator: FF2 goes high when certain faults have occurred. See table below for details.

Table 4.2.7: Pololu High-Power Motor Driver Pin Descriptions

http://www.pololu.com/catalog/product/1456

40

Motor Driver (For Metal Gear Motor)
10A DC Motor Driver Arduino Shield
RB-Cyt-116

Another motor driver is needed to control the speed and direction of the small linear
motor. We chose the 10A DC Motor Driver Arduino Shield because it operated in the range we
require and fit into our limited space. The shield connect directly to the Arduino and also the
Wireless Inventors shield. A couple of the pins are designated for controlling the speed and

direction of the small metal gear DC motor.

Module Motor Driver (W Motors)

PWM signal from Microcontroller
Direction signal from Microcontroller
Inputs 24V From Batteries

Outputs Voltage to control speed and direction of DC motors

The motor driver will take in the output voltage of the microcontroller
and output the correct polarity to the DC motors. Controls the DC motors
to go forwards or backwards. The PWM signal controls the average
Functionality | voltage allowed to pass through to the motors which controls the speed.

Table 4.2.8: Motor Driver (metal gear motor) Functionality

Figure 4.2.9: 10A DC Motor Driver Arduino Shield

http://www.robotshop.com/10a-dc-motor-driver-arduino-shield-2.html

41

Inertial Measurement Unit
Triple Axis Accelerometer & Gyroscope Breakout Board

MPU-6050

An Inertial Measurement Unit is a device that will gather data about the inertia of the IC
using the on board accelerometers and gyroscopes. Our diwheel will be using the Triple Axis
Accelerometer & Gyro in order to measure the inertia of the product while in motion. This
component is key in keeping the device level as it will be the source of feedback to the
microcontroller. Because the IC is very small, we will be using the breakout board in order to

make accessing the ports easier.

Module Inertial Measurement Unit
Inputs Inertial forces acting on device
Outputs Data describing current status of the diwheel’s inertia

The accelerometers and gyroscopes inside the IMU will provide data

Functionality | describing the angle, pitch, and momentum of the device.
Table 4.2.9: IMU Functionality

CLKIN MPU-6000
CLOCK [— Clock
cLkouT MPU-6050
Interrupt
—1 | X Accel —— Status
Register
$—| Slavel2Cand |

Y Accel ADC SPI Serial
Z Accel
Config
Registers [
Master 12C | |
L

»— Serial
$— | XGyro | —| ADC Interface
Sensor —
Registers
AL)]
Factory

Calibration Digital Motion

$— | ZGyro | ——| ADC L1 Processor
(DMP)

Temp Sensor }—»1 ADC ’—->

Charge
CPOUT h Pump

Note: Pin names in round brackets () apply only to MPU-6000
Pin names in square brackets [] apply only to MPU-6050

Figure 4.2.10: MPU-6050 IC Block Diagram

) INT

(cs)
ADO/ (SDO)
SCL/(SCLK)
SDA/ (SDI)

AUX_CL

AUX_DA

Buiuonipuo) jeubig

FSYNC

[
>
g

Bias & LDO

NI N

VDD GND REGOUT [VLOGIC]

i
|

42

Name Direction Description
VCC Input Power Supply Voltage and Digital I/O supply voltage
GND Input Common Ground
INT Output Interrupt digital output (totem pole or open-drain)
FSYNC Input Frame synchronization digital input. Connect to GND if unused.
SCI Input 12C serial clock (SCL); SPI serial clock (SCLK)
SDA Output 12C serial data
VIO Input SPI chip select (0=SPI mode) Digital 1/O supply voltage
CLKIN Input Optional external reference clock input. Connect to GND if unused.
AUX SCL Input 12C Master Serial Clock, for connecting to external sensors
AUX SDA Input 12C Master Serial Data, for connecting to external sensors

Table 4.2.10: IMU Breakout Board Inputs/Outputs

Parameter Rating
Supply Voltage, VDD -0.5V to +6V
VLOGIC Input Voltage Level (MPU-6050) -0.5V to VDD + 0.5V
REGOUT -0.5Vto 2V
Isngtt \S/gl't:)ge Level (CLKIN, AUX_DA, ADO, FSYNC, INT, 0.5V to VDD + 0.5V
CPOUT (2.5V=VDD =3.6V) -0.5V to 30V
Acceleration (Any Axis, unpowered) 10,000g for 0.2ms
Operating Temperature Range -40°C to +105°C
Storage Temperature Range -40°C to +125°C
Electrostatic Discharge (ESD) Protection :;II)VO\(/}-:?AP‘ICI))’
bt JEDEC Class Il (2),125°C
Level A, £100mA

Table 4.2.11: IMU Breakout Board Absolute Maximum Ratings

https://www.sparkfun.com/products/11028

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Components/General%201C/PS-MPU-6000A.pdf
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Components/General%201C/PS-MPU-6000A.pdf

43

4.3 Mechanical Detailed Design

The detailed design portion of this project could be one of the most important pieces to
the puzzle. This section takes everything that has been done so far and compiles everything that
has been documented into a first prototype design. It will be a visual model off what the actual

prototype is going to look like.

This model is the complete design for the DiWheel. It includes all aspects of the concept
that was chosen from the morphological chart. That design was wheel to wheel contact,

triangular chassis and housing, and a counterweight slider for dynamic and static leveling.

Full 3D Solidworks model.

44

Drive Train

This is a focused model on the drive train for the DiWheel. This is an essential subsystem
that will provide the DiWheel with mechanical motion. The drive train includes the DC motor,

drive gear, axel, bearings, and drive wheel.

Drive Train Drive Train on Chassis

The components of the drive train model shown above were selected after first finding
what characteristics had to be met in order to meet our specifications as per Section 2.3. Below,
we define the values determined in the specifications and calculated the power required from the
motor. The power calculation values were derived from unit conversions, power output at
different motor speeds, and ratios between wheel sizes and gear sizes. Our data and calculations

are shown below.

Power Calculations for the Drive Motors:

top velocity (m/s) 7.3000
time to full speed (s) 3.0000
top acceleration (m/s"2) 2.4333
mass (kg) 20.0000
force (N) 48.6667
distance to top speed (m) 10.9500
power (W) 177.6333
power (hp) 0.2382
lin acc 2.4333
ang acc 0.0618
wheel diameter (m) 0.6096
drive wheel diameter (m) 0.1016 Torque Curve
wheel circumfrance (m) 1.9151 6
drive wheel circumfrance (m) 0.3192 5 4
inside wheel diameter (m) 0.5080 \
inside wheel circumfrance (m) 1.5959 = \
: 3 y =-0.0015x + 5.025

z 3

e —o—Torque Curve
outter wheel to inner wheel 1.2000 g2)

E ——Linear (Torque Curve)

1
wheel rpm 228.7069 o
1000 2000 3000 4000

inside wheel to drive wheel 1 RPM
ratio 5.0000
drive wheel rpm 1143.5345
wheel torque (N*m) 14.8336
drive wheel torque (N*m) 2.9667
in*lb 26.2576
motor drive ratio 2.0000
motor rpm 2287.0691
each drive wheel (N*m) 1.4834

46

Dynamic and Static Leveling: Counter Weight

The model seen below is of the counter weight slider mechanism that will provide the
Diwheel with static and dynamic leveling. The slider consists of two guide rails, the
counterweight, and a drive motor. This motor is in charge of rapidly moving the weight along the
rails. As the weight slides forward and back, it creates a torque on the chassis to counteract the

torque created by the drive motor.

Leveling Leveling on Chassis

The components of the counter weight slider model shown above were selected after first
finding what characteristics had to be met in order to meet our specifications as per Section 2.3.
Below, we define the values determined in the specifications and calculated the displacement
needed by the slider to counter balance the torque of the motor. There are three dynamic
equations defining our diwheel that were adapted from the Edwards Diwheel Project, Appendix
C. The first equation is the sum of the torques on the chassis about the wheel axis. The second
equation is the sum of the torques on the wheels about the wheel axis. The third equation is the

sum of the torques about the vertical axis. The variables are defined in Appendix C.

47

Defining and solving Dynamic Equations:

Initial Equations

(1) szzé — a, cos(8) ¢ — sin(0) cos(8) ZO? + ag sin(6) + Zb(é — qb) —mgg(lcos(0) +
rsin(@)) + 2Ty =0

@ (2, +™25) b — a, c05(6) b + ay sin(8) 62 + 2bych + 2b(¢p — §) — 2Ty = 0

2

. L . N
3) (]sz +]yy) Q + 2asin(0) cos(8) Z6Q + % 4 he_ <L> 2K¢Np, Vot ZK;; Mg - o

2a 2a Py, 7 Rm m

For our detailed design, we are only going to focus on the first equation, which has to do
with the sum of the torques on the chassis about the wheel axis. We will ignore friction in the
system and look at a case where there is not turning about the vertical axis. This will allow the

equation to be simplified. Once simplified the displacement of the slider can be solved for.

Simplified
a . . (1) . .
F58 — a, cos(0) ¢ — sin(@)cos(@)ZQ% + a, sin(0) + 2b{8—¢) — myg(l cos(6) +
rsin(@)) + 2Ty =0
—myeR cos(8) ¢ + myeg sin(8) — myg(l cos(8) + rsin(6)) + 2Ty, =0
mggl cos(0) = 2Ty, — mpeR cos(0) ¢ — myeg sin(8) — mygr sin(Q)

2Ty, — mpeR cos(0) ¢ — myeg sin(8) — mygr sin(0)

L= mgg cos(0)

After we solved for the displacement of the counter weight slider, we simplified again for
two different cases. The first case is the displacement needed at constant maximum acceleration
and the second is the displacement needed at constant maximum velocity. This is the
displacement that the slider needs to move to keep the chassis at a given angle during maximum

acceleration.

Displacement at Constant Max Acceleration

_ 2Tyq — mpeR cos(0) ¢ — myeg sin(8) — mgr sin(6)

acc —

mgg cos(0)

48

We then simplified the equation for the displacement needed at constant velocity. For this case,

we set the angle of the chassis to zero simplifying to the following equation.

Displacement at Constant Max Velocity

2Ty

msg

lvel =

Below we define the value of the variables used and show our calculated values for the

displacement of the sliding counter weight.

Defining Variables and Solving for Displacement of Slider:

Term Variable Value Units
Mass of body m_b 30.000 | kg
Radius of Wheels R 0.305 | m
Radius of Mass e 0.127 | m
Max Pitch Allowed S] 2.750 | deg
Max Pitch Allowed] 0.048 | rad
Max Torque T_m 7.480 | Nm
Max Displacement of
Slider |_max 0.110 | m
Mass of Slider m_s 1.000 | kg
Max Linear Acceleration | a 1.217 | m/s”2
Max Angular
Acceleration I 3.992 | rad/s"2
Radius of Slider r 0.095 | m
Intermediate Terms | Variable Value Units
ag=
Gravitational constant m_b*e*g 37.376
axs=
Cross Coupling term m_b*e*R 1.161
Final Calculations Variable Value Units
Displacement of slider at
max acceleration,
1.2166 m/s”2 |_acc 0.103 | m
Displacement of slider at
constant velocity, 7.3
m/s |_vel 0.022 | m

49

Hardware Table/Electrical Components

/
‘o = o
v /

a8

—
O,
Hardware Table with Electrical Components

The hardware table was then modeled and will be able to hold all of the
electrical components and the select user hardware. The electrical components will
include the breadboard, Arduino Uno controller set up, and 9V battery. This part
will be comprised of four legs and one platform that will all be printed on the 3D

printer.

50

Hardware Table with Electrical Components on Chassis

Chassis and Guide Wheel

The chassis 1s shown modeled below. It is comprised of aluminum angle
iron, plate, and bar and will form a triangular prism shape. At each of the three
corners there will be a guide wheel to keep the bike wheel in line and in contact
with the drive wheel. As the diwheel is used the guide wheels will begin to wear
causing vibrations in the system so a tensioner will be added to the top guide wheel

to account for this wearing.

Chassis

Tensioner

51

52

Full Exploded View

Shown below is the full Solidworks model of the DiWheel from different

views. You can see how each subsystem interacts with each other.

Isometric View Side View

Exploded View

53

4.4 Electrical Detailed Design

Detailed design is one of the most important aspects of the design process as it describes
how the design will be created. This section is divided up into two sections; one for hardware
design, and the other for software design. The hardware design section describes some of the
physical connections that will be made between components. The hardware section will also give
an overview of the electrical components and how each fits into the design. The software portion

describes the logic flow of the programming and gives detail to what algorithms will be

/

implemented.

——

—

54

4.4.1 Hardware Design

This project will not require extensive designing of hardware, but will utilize various
components together. The hardware will revolve around the Arduino Microcontroller as it will be
handling all inputs and outputs. The various components will be brought together to create the
functionality the diwheel requires. This section will describe some of the connections that will be

made between components and how they will interact with each other.

The Wireless Inventors Shield for Arduino is directly attached to the Arduino Uno’s I/O
ports. The shield will utilize some of the Arduino’s pins while leaving the others unattached.
Because the shield sits on top of the Arduino itself, headers are used to connect and extend the
I/O pins of the Arduino. The circuit schematic of this shield in relation to the Arduino’s I/O pins

can be found in Figure 4.4.1.

55

1 2 k] 4
Pt B3
550080365 580-106-0365 e
25N 10 PINHEADER FEVALE 2 54MAI"x10 PIN HEADER FEMALE 3.3V o 3.3
" - LTST-C161KRKT
A . R roon HEE ”
ARD_RX = 0|Rx A5 —f o 474 5% drg 5%
ARDTX 21 3|7 |RFD21733 pr O S ot1sc0N i QB0TRF o [603-RF
21 aE. DPOT SMT SLIDE SWITCHER 2 4 AMA
@ 5 3 +33V
—= 3P w0t ‘
=T m A m — c1) , DIN
5 1o 5| pam A 14 0,200 -20% +B0% SOV Y5V RED
— 1~ sipwm ARDTRED——a, o | 0503-RF
b . ARDIO_11 —2 o} A
: o8 5 e ok ol g . o
ImIH 13 T b 8 R CTIGIZS0EVR Dhsr.crawar
ARD_10_10 —g—1—= 13V m +3.3V_ARD I\w\((lsﬁ ARDIOL10 @ 30723, 5Leads U03-RF -
ERDEIOTHD—e1e RESET 04 Hardware 0 . QB03HF
T [4 5
—_ . VA
s — EfSacauenTr LFs
3 - e MM TACT SWITCH Software N [DOUT
. . i +BY GREEN
L Arduino shield RESET Sarial port sslecior H o RFD_DOUT
I i = 1UF -20% +BO% B0V Y5V
; GRD footprint e == OGBRF
P i
s8010803.0.8 . i i GHND
R O e e ADER FEMALE Wmm_.w‘__mm.mw%mw‘ 3 Serial port con :@R.o:ms._... RFD Mode Mﬂ_._mﬁ |
Shield serial port: Pos. 1 MODE Pos. 2 GhD
Disconnected from Arduino | OFF Mode 2 OFF +3.3V it} i
Connected to Arduinc oM Moded | ON HeeseesnuTic H
,4-Leads H
- +5V NOT PLACED +3.3V
£33V 3 UEQ3RF TW VN vouT i o
(1uF -20% 0% SV YSY]
- 1._‘ H 4 . ENABLE GND —! H DBI3-RF i
BOGRF o4 i
23 7 1uF 205 <B0% 16V Y5V |I_! NOT PLACED |
o] iR s = = m
" e m%umm“ GND o1 pLaceD GND GND H
LEARN RFD21733 Module Wire antenna i - : : weeedt
YELLOW _[] RFOCHP 1S {only for RFD21735) *Mot placed, radio is low power 50 using +3.3V from Arguine.
| ’ R = = =
LraTCieRT ghr e i GND 45— GND aND —34 Giip afio
DBUIRF H<— GND GND —=
— L+ - moDE2 MODE1 - qz—{+3.3v
& - LEARN/TX LED/STATUS MODEO - o
am s ==~ INT/OUT1/LOGICIO FACTORY -7
Besy 2 IN2/ OUT2/ RXD IRESET - o
EDERF RFO_DIN —%. - IN3/OUT3/TXD W —5—saav
BU3RF - GnD GND —— RFD21815
EXT ANT
15 . . .
ANTENNA oND |5 Wireless Inventors Shield for Arduino
= = = = = 09.06.2012 5:55:08 AM
GND GRD GND GHD GND -
@w%&.wﬁmm (C) Copyright 2012, OpenSourceRF.com
R353 B0O1
nﬂb Size Number Revision
Ad A
Date: 09.06.2012 Sheet1 of 1
File: D:\WWorkl, \R353_Arduino_Shield. SchDdirawn By:
1 2 3 4

D

Figure 4.4.1: Wireless Inventors Shield for Arduino Circuit Schematic

http://www.opensourcerf.com/rfd21815/RFD21815%20wireless%20inventors%20shield%20manual.pdf

The Wireless RF USB Dongle utilizes the RFD21733 transmitter within the hardware.

The circuit schematic for the RFD21733 transmitter can be found in Figure 4.4.2.

LED "1 R2 s1
220 OMM 220 OHM
KKK AN AN 0 O 1> o3V
STATUS LEARN
R3
K RFD21733
w2 Mode 7
- FR21733
— anp MTop View eno Hi—
] GND Mode Select GND |E—
e e L M1 R E—r ey
A LEARN / TX LED / STATUS MO o3V
—3d INT/OUTI/LOGICIO FACTORY
8 N2/ OUT2/ RXD RESET pid
= IN2/ OUT2/ TXD wHE— sy
—Ad Gnp GND
EXTANT j1—
If possible, use a 470 ohm resistor or larger, GND |-10— =
F" sear J ’ g ANTENNA GNo Hi—
to allow for highest logic level on the LEARN

input as possible, due to the resistive divider
that forms when pressing the LEARN button.

Figure 4.4.2: RFD21733 Transmitter Circuit Schematic

http://www.opensourcerf.com/common/RFDP8.RF.Modules.Manual.pdf

56

57

Our design will utilize the breakout board for the IMU sensor. This breakout board will
allow us to easily access the needed terminals in our design. The circuit diagram for this

interface can be found below in Figure 4.4.3.

o

AE
o
=}
2

uce ucc ucc uce
c3
Te.1urvce
Jps A28 2

)2 GND GND 11
-ML 1; VDD AUX CL %@L&L
—J7_Fsvne INT__12 | |7 AUX DA | &—aux_sna
-16 SCL ESYNCIT f psync scL |2
-}5Sha 11 CLKIN SpA (24 SDA acr
P K 10 | RecouT Apo |2 A0a =]

I(_)

13 CLKIN e R fg CPOUT VLOGIC |8 1w ‘

1% 1% | GND I2C Addrgss Selection*
[T Alx_sDa el Y W 1 |c2 c4

o® oW = - -

| MPU-6050-1
M1@” [R @,iuj 2.2n 10nF

GND GND GND GND GND GND GND

Figure 4.4.3: MPU-6050 Breakout Board Circuit Diagram

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/IMU/MPU-6050 Breakout%20V11.pdf

58

An overall picture of the hardware used and connections can be found below in
Figure 4.4.4. The completed design will also contain certain safety precautions such as fuses and
switched to turn the system on and off easily. The complete circuit diagram for the hardware can
be found in Figure 4.4.5. Table 4.4.1 lists the pins and connections of the digital side of the

design.

Wireless RF
Dongle

. (Transmitte ‘ > ! :
e — o MPU6050

Wireless

Inventors Arduino
Shield for Uno

Motor ¢

Drivers /@ 10A
7.5 oA Motor

Driver

Arduino
Shield;

Figure 4.4.4: Abstract Electrical Connections

59

vDD
Motor Driver 1

F4 (20A) Motor 1

GND B

—o_o—
—o/o—» F1 (20A)

SW2 o\ 0O
F2 (20A) N—— vDD A
+ V2 Motor Driver 2
— / 12V
GND B

swi F8 (10A) |

VPRotor Driver 3
otor Driver
@) \1121 Vv Motor 3 (Linear Motor)

GND B

F5 (20A)

F6 (20A) Motor 2

F7 (20A)

Y/

N

Figure 4.4.5: Diwheel Circuit Diagram

Connection Wire Color Function

0 Wireless Shield No Wire (Header) RX (Receive Serial Data)

1 Wireless Shield No Wire (Header) TX (Transmit Serial Data)

2 LM EncA Yellow Encoder output from LM
~3 LM PWM No Wire (Header/JD3) PWM Signal of LM

4 - _ _

~5 LM EncB White Encoder Output From LM
~6 M1 Direction Green Controls direction of motor

7 M2 Direction Green Controls direction of motor

8 M1 RESET White Resets motor driver 1

9 M2 RESET White Resets motor driver 2
~10 M1 PWMH Yellow PWM Signal of M1
~11 M2 PWMH Yellow PWM Signal of M2

12 LM Direction No Wire(Header/JD12) Controls direction of motor
13 - - -

Table 4.4.1: Diwheel System Digital Side Pin Mapping
- No Connection
~ Indicates a PWM capable pin
LM: Linear Motor
Ml: Motor 1 (Left Motor)
M2: Motor 2 (Right Motor)

60

4.4.2 Software Design

The diwheel’s chassis is required to be level in our design. In order to keep the chassis
level, a control algorithm is needed. This algorithm will monitor the current movement and
adjust the chassis accordingly. The microcontroller will house a program that will implement a
PID controller to accomplish this. The basic structure of this algorithm can be found below in
Figure 4.4.6. When the device is powered on, the system will first initialize all inputs to the
default/starting values. The control loop will then start and read the data from the IMU sensor as
well as the user’s commands. Once the data is read, it will be processed and the output voltage
for the DC motors will be adjusted to correct any sloshing that will occur. This will keep the

chassis level.

Initialize

!

Read Sensor €
Data

!

Process Sensor
Data/Adjust Output

|

Adjust Motor
Voltages

Figure 4.4.6: Control Loop

61

A PID Controller is the most common feedback controller and will be the most effective
for our diwheel’s leveling design. A PID controller feeds back information to be taken away
from the desired state. When the diwheel accelerates or decelerates, the chassis will want to
rotate forward and backward. The PID controller will take the data from the IMU sensor and use
it to create the error signal. When the diwheel goes past the desired degrees of freedom, feedback
will be send to the input to correct the “slosh” of the device. A typical feedback loop can be

found in Figure 4.4.7. Our PID controller will be implemented in the software on the Arduino

Microcontroller.
| K p -e(t)
Desired State e(f) T Control Signal
—_— »| K I t e(t) —a-O | M -
+ 4 g
d
w K _-—elt
Feedback Signal

Measured State

Figure 4.4.7: PID Controller

62

4.4.3 Diwheel Controls

The diwheel will be controlled by the user through serial communication. This can be
done in either HyperTerminal on Windows, or the Arduino’s Serial Monitor tool on all operating
systems. The device is designed to operate at a baud rate of 9600. The program has been written
with specific keys mapped for specific functions. The commands/controls can be found in Table
44.2.

Command

A
1)
<

Forward
Left
Backward
Right
Spin counter-clockwise

Spin clockwise
Stop (Coast to a stop safely)
Stop (Emergency Stop — Brake)

Turn on system (On)

Reset system (Off)
1,2,3,4,5,6,7,8,9,0 Speed Control (Low to High)
Table 4.4.2: Diwheel Controls

sfm|<|x|o|le|a|n|o|s

The diwheel is controlled via the onboard program within the Arduino. This code is
written in the Arduino language which is C based programming language. The program has been
written with several safety precautions in mind such as protection against changing a motor’s
direction too suddenly and ramping the speed down before completely stopping. The program
(“sketch”) can be found in Appendix C.

63

5. Milestone 5: Prototyping

Before the complete system could be assembled and tested, prototyping had to be
completed. Prototyping involved establishing a basis for which the final product would be built
upon. Each component was prototyped and then the system was prototyped. Components were

assembled, constructed, wired, soldered, and built in order to meet the design specifications.

5.1 Mechanical Prototyping

Mechanical prototyping consisted of the manufacturing process for all the mechanical
components. In this section, each component is listed and a description of how they were
manufactured, why that design was chosedn, and a picture of the finished product.

64

65

Component: Chassis

Functionality: Component Mount
The chassis is where the motors, batteries, leveling components and electrical
components are mounted and where the axels to the guide wheels and drive train are attached.

Angle iron was cut and welded at the corners in order to build the frame of chassis platform.

Once the frame was completed, the aluminum plate was cut to fit.

— -

Figure 5: Cutting Aluminum Plate

66

Component: Tensioner

Functionality: Keeping Top Guide Wheel Axel in Tension

The tensioner was made out of lin x lin steel stock to be 3 inches long. It was cut to

length on the band saw and then a '% in slot was milled out using the manual mill.

-

< a
-

[

z

<

/Y

v
0
4

= \

Figure 6: Milled Tensioner

Component: A-Frame

Functionality: Providing Structure For Top Guide Axel
Four lengths of 1in x 1in x 1/16in angle iron were cut to create the four arms of the A-
frame. Two 4in x 4in right triangles were cut from 1/16in thick sheet to later be welded to

support the A-frame from leaning.

Figure 7: A-Frame

67

68

Component: Guide Wheels
Functionality: Wheel Attachment

There are a total of six guide wheels, three on each wheel. Grooves in the middle of hard
plastic cylinders were milled using the lathe. With all six wheels milled, the three axels for them
were made. Using ' in diameter steel rod, three rods were cut to 24 in each. Each end of the rod
was taken down using the lathe to be 5/8 in diameter to create a shoulder for the guide wheels to
sit upon. The ends of the rods were threaded and a nut was used to secure the guide wheels to the

rod.

\ Vot

Fighre 8: Lathe Groove in GGide Wheel Figure 9: Axel Shoulder and Thread

Figure 10: Lathing Guide Wheel Axels Figure 11: Guide Wheel

69

Component: Drive Plate

Functionality: Plate to Attach Drive Axel System to

A plate was cut from 1/8in x 3in sheet to the same width as the frame. This plate is where
the drive axel assembly will be mounted to and this plate will be welded to the bottom of the
frame. This plate will allow the drive axel to be mounted to the frame and not the aluminum

plate.

Figure 12 & 13: Drive Plate

70

Component: Supporting Strap

Functionality: Provide Support for the Middle of the Drive Plate

The supporting strap was cut from a 1in x 1/8in strap at a length that fit tight between the
front and back of the frame. This strap was welded on to the frame and then welded to the drive
plate to support the middle of drive plate. This support was necessary so that the drive plate did

not deflect too much as the drive wheel axel was tensioned.

Figure 14 & 15: Supporting Strap

71

Component: Leveling Weight

Functionality: Leveling

The sliding counter weight was created from steel. It was cut five inches in length from a
lin x lin stock and two 5/8 in holes were drilled; holes were drilled beginning with a 1/4 bit,
moving to a 1/2 bit, and then finishing with a 5/8 bit. Attaching the sliding weight to two bars
was done by press fitting two brass sleeve bearings into the drilled holes. These bearings were
slightly too large so to make sure they would fit properly, the outside was sanded down before

being press fitted in. Lastly, the motor mount for the leveling motor was machined.

Figure 17: Drilling with 1/4 Bit

=

W |

Fiure 18: Drilling with 5/8 Bit Figure 19: Finishe.(fWeight with Bearings

)
Ny

Figure 20: Weight

7

on. Rails

"

Figure 21: Leve

lihg Motor Mount

72

73

Component: Leveling Rod Mounts
Functionality: Hold Leveling Rods in Place

The Leveling Rod Mounts are made from lin x 1/8in strap. They have a ninety degree
bend at the bottom for a bolt to secure it to the aluminum plate. The vertical portion then has a
slight deviation to make them slightly wider to fit the leveling rods. At the top a small steel

cylinder was welded to hold the leveling rods in place.

Figure 22: Leveling System Rod Mounts

74

Component: Leveling Idle Axel
Functionality: Hold Idle Gear to Leveling Rod Mounts

This axel was made from a 3/8 steel rod. The process of making the part included drilling
and machining.

75

Component: Leveling Chain Tensioner

Functionality: Tension Chain and Maintain Contact with Leveling Motor

The leveling chain tensioner was made from 3/4in PVC pipe held down by two 3/4in
conduit clamps. This tensioner was placed close to the leveling motor so that the chain would
maintain a high angle of contact on the gear on the motor. The tension can be adjusted by
tightening the bolts.

Figure 24: Leveling System Chain Tensioner

76

Component: Hardware Table
Functionality: Table to Mount the Electrical and External Hardware

A tabling using plexiglass and steel was built. The legs were made by bending steel straps
at 90 degree angles on either end. Holes were drilled through the plexiglass and legs in order to
bolt the two together. Also, holes in the plate and bottom of the table legs were drilled to be
bolted.

Figure 25: CAD of Hardware Table

77

Systems Prototyping: Frame and Guide Wheels

The guide wheel axels were welded to the side of the frame of the chassis. This design
will help keep everything aligned as well as provide structural support for the chassis. The next
step was to weld each tensioner to an arm of the A-Frame. The arms of the A-frame were then
placed on the frame and tack welded on. They were checked with a right angle to ensure that
they were vertical. Next the support triangles were welded on the A-frame arms and the frame to
keep the arms vertical. The drive axel assembly was then placed on the drive plate and the holes
were drilled to place the bolts. The plate was then in the middle below the left and right angles.
The support strap was then placed between the front and back angles of the frame and welded to
the frame and drive plate.

Figure 27: CAD of Chassis Figure 28: Support Straps

78

Systems Prototyping: Drive Train Assembly

The location of the motors on the frame was determined and they were bolted down.
Next, the location of the drive axel was determined and the bearings were bolted to the frame.
Once these two key components were in place, the chains were attached via gears. In order to
properly tension the chains, adjustments to the bearings were made by tightening/loosening bolts
and adding rubber bike tubes as “spacers”. Securing the two batteries was done by strapping
them to the plate.

79

Systems Prototyping: Linear Leveling Assembly

The linear leveling system required that the four rod mounts line up properly so that the
mass would be able to slide affectively. All four mounts were bolted to the middle of the frame
of the chassis. Next, the leveling drive train, consisting of the motor, gear, chain, and chain

tensioner, was assembled.

“ Bt |
L JEoca
L OAE |

5.

F igure 32: Linear Leveling Assembly

Figure 33: Linear Motor and Chain Tensioner

Full Mechanical Prototype
Once the sub systems of prototyping were complete, the full mechanical prototype was
assembled. Everything was bolted down prepared so that the electrical portion could be easily

integrated.

80

81

5.2 Electrical Prototyping

Electrical prototyping involved setting up the electrical components. This involved
syncing the wireless communications, soldering wires, wiring the circuits, and mapping the
digital pins. The Arduino code also had to be written during this time in order to set up certain
components.

Component: Wireless Inventors Shield/Dongle
Functionality: Wireless Communication

The first step in the electrical portion of prototyping was to establish the wireless
communication of the device. In order to do this, the Wireless Inventors Shield needed to be
synced with the Wireless USB Dongle. The Wireless Inventors Shield was attached to the
Arduino for power, and the Dongle was plugged into a laptop. Each device has a “learn” button
which allows the two wireless chips to be able to communication with each as well as ignore all
other signals. Once paired, the communication had to be tested. Using HyperTerminal on the

laptop, serial data was sent over wirelessly to the Arduino. The test was successful and was

shown by the RX LED on the Arduino lighting up when a character was received.

82

® OO0 software_serial_loop | Arduino 1.0.1

software_serial_loop

fAWireless Inventors Shield Test (software)
#include <SoftwareSerial.h=> 1'
SoftwareSerial mySerial(18,11);
int incomingByte = 8;
void setup()

mySerial .begin{9608);
¥

void loop{)

1
if {mySerial.ovailoble() = @) |
1

incomingByte = mySerial.read();

mySerial.print{"I received: ");
mySerial.write{incomingByte);
démySerial.print{"/r/n");

¥
¥

<« » 6B

Arduino Uno on /dev/cu.usbmodem621

83

Component: H-Bridge Motor Driver 1A
Functionality: Motor Control

The next step in the electrical prototyping was to learn and set up the H-Bridge. The H-
bridge is what governs the motors as well as the power source. The H-Bridge IC chip was placed
on a breadboard and wired according based on the datasheet. Because the motors had not yet
arrived when this prototyping began, LEDs were used to simulate the direction of the motors and

test the logic of the program. Two different colored LEDs were used and connected to the H-

Bridge in order to simulate how the motors would be set up.

® O O hardware_serial_loop | Arduino 1.0.1

hardware_serial_loop §

int incomingByte = 8;

int brightLED = 8;

int outputValue = 8;

const int analogOutPin = 2;

void Setup()

1
Serial.begin{968@);
pinMode(8, OUTPUT);
pinHode(?, DUTPUT);

¥
Fﬂid lDDW()
{
if (Serial.available() > 8)
{
iLcomingByte = Serial.read();
switch{incomingByte) {
case 'w's
digitalWrite(?, HIGH);
digitalWrite(8, HIGH);
break
case 's':
digitalWrite(?, HIGH);
digitalWrite(8, HIGH);
break;
case 'a':
digitalWrite(?, LOW);
digitalWrite(8, HIGH);
break;
case 'd':
digitalWrite(?, HIGH);
digithWrite(S, LOW)s;
break
case 'x's
digitalWrite(?, LOW);
digitalWrite(8, LOW);
default:
break
¥
¥
1

Arduino Uno on /dev/cu.usbmodem621

85

Component: 24V DC Motor
Functionality: Drives the Drive Wheels for Movement

Once the motors and batteries were received, the next part in the prototyping process was
to swap out the LEDs in the preliminary testing circuit, with the actual DC motors. Prototyping
was first done on one motor with a single 12V battery. Once this was successful, the second
motor was added. However, when the second motor was added, there was not enough power to
drive both motors. In order to add power, a second 12V battery was added in series to obtain
24V. This was too much power for what the H-Bridge was designed for and the IC chip failed.
As a result, more research was done on obtaining a motor driver suited for high power

applications.

% N EEENGEN

Motor_Test

const int motoriPini
const int motorlPinZ
const int motorzPinl
const int motorzPinz
const int enablelPin
const int enablez2Pin
int incomingByte = 8;

/¢ H-bridge
/7 H-bridge
* H-bridge
/¢ H-bridge
/7 H-bridge
/7 H-bridge

nn
O oo hm AW

-

.

void setup() {

Serial .begin{9600);

pintode{motoriPinl, OUTPUT)
pintode{motoriPin2, OUTPUT)
pintode{enablelPin, OUTPUT)
pintode{motor2Pinl, OUTPUT);
pintode{motor2Pin2, OUTPUT);
pintode{enable2Pin, OUTPUT);

digitalWrite{enabledPin, LOW);
digitalWrite{enable2Pin, LOW);

void loop() {
if (Serial.available() > @)
1
incomingByte = Serial.read();
switch{incomingByte) {

case 'w': //forwards
digital¥rite{enablelPin,
digitalWrite{motoriPini,
digital¥rite{motoriPin2,

digitalWrite{enable2Pin,
digitalWrite{motor2Pini,
digitalirite{motor2Pinz,
break;

case 's't //backwards
digitalWrite{enablelPin,
digitalWrite{motoriPini,
digitalWrite(motoriPin2z,

leg 1 (pin 14)
leg 2 (pin 24)
leg 3 {pin 34)
leg 4 (pin 44)
enable pin

enable pin

HIGH);
HIGH);
LOW);

HIGH);
HIGH);
LOW);

HIGH);
LOW);
HIGH);

s

86

cas

digitalvrite{enable2Pin,
digitalWrite(motor2Pini,
digitalvrite{motor2Pinz,
break;

e 'q':s //quit
digitalvrite{enablelPin,
digitalvrite{enable2Pin,
digital¥rite{motoriPinl,
digitalvrite{motoriPin2,
digitalvrite{motor2Pini,
digitalvrite{motor2Pinz,
break;

HIGH);
L I:I IIIIl ;
HIGH);

Low ;
ng);
LOw H
LOWY;
Low ;
LOw H

Arduino Uno on /dev/cu.usbmodem621

4 S

87

88

Component: Pololu High-Power Motor Driver 24v23 CS
Functionality: Motor Control

After the failure of the IC H-Bridge, this motor driver was selected to take its place. Two
drivers are required because each can support only one motor. Prototyping began with soldering
on the capacitors and headers to the board. Wires were then soldered onto the power side of the
board for the connection to the batteries and motors. Before soldering was completed, the motor

driver was first tested in the lab. Once the drivers had been successfully tested, the final

soldering was done and the component was brought into the completed system.

&9

Component: 10A DC Motor Driver Arduino Shield
Functionality: Linear Motor Control

After the main motor drivers were ready, the next step in prototyping was to bring the
linear motor driver online. This motor driver is another shield for the Arduino and is connected
between the Wireless Inventors Shield and the Arduino Uno. The driver had jumper pins which
make connections to specified I/O pins for use by the Arduino. The pins were chosen based on

which Arduino pins were available and fit into the overall design. Once the pin assignments had

been established, the motor driver was placed into the system for testing.

90

Component: Triple Axis Accelerometer & Gyro Breakout-MPU-6050
Functionality: Leveling Feedback

Lastly, the accelerometer and gyroscope which is used in providing feedback to the
system was worked on. The component sends values corresponding to the chip’s inertial data
back to the Arduino for use in computations. Prototyping for this component simply involved

soldering on the pins and wiring it to the Arduino.

91

Electrical System Integration Prototyping

After each component had been through prototyping, system integration began. System
prototyping involved bringing all of the components together to form one complete system. This
was the most lengthy prototyping process and was started after the main parts of the diwheel had
been assembled. First, system integration prototyping began with making the connections
between each component. The Arduino and its two shields were wired to the breadboard. The
Motor drivers were wired to the breadboard as well as to the DC motors and batteries. Fuses and

switches were also implemented in the final design which were wired in during system

integration prototyping.

92

After some initial testing, the final system needed to be finalized. Once the geometries of
the locations of the batteries and motors could observed, wire could be cut down to an
appropriate length to clean up the system. During this time, the switched were added and the
connections were soldered in to keep everything secure and stable. Green LEDs were also added

to the design to increase the aesthetic appeal and user friendliness. Once everything was secured

and finalized, more system testing began.

93

Software prototyping was done in parallel with the hardware prototyping. As certain

hardware connections were made, the appropriate changes were implemented into the software.
Software prototyping continued through into testing as well. When there was an error or
undesired functionality, the software had to be updated. One issue we ran into during system
prototyping involved the Arduino Uno. Because of the many components, we quickly ran out of
I/O pins on the Arduino. In order to solve this issue, the current sensors and fault flags of the

motor drivers were removed.

94
6. Milestone 6: Testing and Verification

Testing is the step in the design process that comes after the prototype has been
completely built. Testing for the diwheel has been split up into five different categories, which
include mechanical, electrical, system integration, design specifications, and future testing. Each
section illustrates each and every test that was performed, how it was performed, the results from

the test, and the solutions that would be implemented to correct any failed tests.

6.1 Mechanical Component Testing

The mechanical component testing consists of all the tests that pertained to the physical
workings of the diwheel. Each of the mechanical components was tested to ensure they
interacted correctly with one another. The tests that were carried out involved dynamic
components such as the wheels and the leveling system.

6.1.1 Guide Wheels

Figure 6.1.1: Original Guide Wheel Design

Test No. | Test Procedure | Expected Result | Actual Result | Pass/Fail | Comments
A reasonable Too much
Spinning bike arpopnt of friction .
wheels o frlctlop between beWeen the . Material
1 . the guide guide wheels | Fail was too soft
simulate a : :
forward motion Wheels and !;he and the rim and sticky
rim of the bike | of the bike
wheels wheels

Table 6.1.1: Testing of Original Guide Wheels

Plan for Correcting:

The material used, soft rubber, ended up creating too much friction and not easily sliding
along the bike wheel rims. To fix this, hard plastic was bought and machined into the same shape

as the original guide wheels. In doing this, the guide wheels were made into the needed shape.

Being made from hard plastic, they do not create as much friction with the bike wheels; instead,

they allow the bike wheels to spin freely and are truly guide wheels just keeping everything in

place.

Figure 6.1.2: Redesigned Guide Wheels

Test No. | Test Procedure | Expected Result | Actual Result | Pass/Fail | Comments

Spinning bike .

wheels to V.er}.' little Very little

. friction between | .. ”.

simulate a . friction.

2 forward motion the guide wheel Allows for Pass
and rims of the ..
(after . free spinning.
X . bike wheels
modification)

Table 6.1.2: Testing of Modified Guide Wheels

6.1.2 Leveling Set-Up

Figure 6.1.3: Original Linear Leveling Set Up

97

Test No. | Test Procedure | Expected Results | Actual Results | Pass/Fail | Comments
i Sliding mass) Very little frotion. z?ld Fail
along the rails | friction .
binding
With mounts,
placing the Mounts were
motor in the Everything fits too short
2 proper location | nicely and has causing the Fail
and sliding the | enough clearance | sliding mass to
mass along the hit the motor
rails
While sliding
the mass, Sturdy and able .
3 observing the to take the forces Slightly Fail
stability of the | placed on it unstable
rail mounts

Table 6.1.3: Linear Leveling Set-Up Tests

Plan for Correcting:

The rail mounts were too short and not strong enough, so new mounts were designed and
machined out of steal instead of aluminum. Within the redesign, steel, instead of aluminum, was
used for more strength and stability. Also, the redesign simply used sheets of steel that were bent

at a 90° angle with cylinders welded for where the rails are set. It was determined that in order
for the mass to slide with little friction, the force needed to be applied at the center of the mass.

Figure 6.1.4: Modified Linear Leveling Rail Mounts

b |

Figure 6.1.5: Modified Linear Leveling System Set-Up

98

99

Test | Test Procedure | Expected Results | Actual Results | Pass/Fail | Comments
No.
The reason there
is added friction is
1 Sliding mass Very little Too much Fail Ltitéﬁilggles were
along the rails friction friction)
perfectly straight
and therefore the
rails bow.
With mounts,
placing the)
motor in the) There is
: Everything fits enough
2 proper location : Pass
. nicely clearance for
and sliding the
mass along the all components
rails
While sliding }Vr“h afl’lphed
the mass, Sturdy and able ncl)ocer; s go not
3 observing the to take the forces m ! and ar Pass
stability of the | placed on it ove ©
rail mounts able to handle
them

Plan for Correcting:

Table 6.1.4: Linear Leveling Set-Up Tests

Ensuring that there is enough lube on the railings while the diwheel is being used will

help eliminate some of the unwanted friction. A Teflon lubricant was purchased which aided in
reducing the friction.

Test | Test Procedure | Expected Results | Actual Results | Pass/Fail | Comments
No.
4 Sliding mass Very little Very little Pass

along the rails | friction friction

Table 6.1.5: Linear Leveling Set-Up Tests

6.1.3 Drive Train

100

drive wheel
and the frame
of the bike
wheel

Test No. | Test Procedure | Expected Results | Actual Results | Pass/Fail | Comments
Drive axel
assembly was
held in place
under the plate
in order to Drive wheel is in
1 check the contact with the | There was a Fail
distance rim of the bike 0.5” gap
between the wheel

Table 6.1.6: Drive Train Location Testing

Plan for Correcting:

The drive axel assembly was attached to a separate plate which was in turn mounted to
the bottom of the plate. Also, to close the gap even more, the assembly was moved to a new
location, forward on the plate instead of in the middle, to bring the drive wheel up higher on the
rims of the bike wheels.

Test No.

Test Procedure

Expected Results

Actual Results

Pass/Fail

Comments

Drive axel
assembly was
held in new
location in
order to check
the distance
between the
drive wheel
and the bike
wheel

Drive wheel is in
contact with the
rim of the bike
wheel

There was no
gap

Pass

Drive axel
assembly was
held in new
location under
the plate in
order to check
the
functionality of
the new
location

New location
would be easily
adjustable

New location
was not easily
adjustable

Fail

Table 6.1.7: Redesigned Drive Train Location Testing

101

Plan for Correcting:

The drive wheel was brought back to the center of the plate, which again increased the
gap to the rim of the bike wheels. To close the gap, rubber was secured between the bearings of
the drive wheel assembly and the aluminum plate. Also, in order to avoid any bowing along the
drive wheel axel plate, a steel support plate was welded perpendicular to the drive wheel axel
plate and in the center of the frame.

102

Drive axel
assembly was
held in new
location under
the plate in
order to check
the
functionality of
the new
location

Location would
not require
precise
alignment

Location did
not require
precise
alignment

Pass

Applied
tensioner and
checked to see
if there was
any bowing
along the drive
axle plate

No bowing will
occur

No bowing
occurred

Pass

Table 6.1.8: Final Design Drive Train Location and Support Testing

6.1.4 Controller Testing

e ey

Figure 6.1.9: First Three Successive Peaks for Damping Test

103

Test No. | Test Procedure | Expected Results | Actual Results | Pass/Fail | Comments
The body of
the Diwheel
was lifted until ‘ ‘
the bottom was The darppmg Damping
perpendicular | The damping of gvfatshf::acliglviigcll Z‘zztl;sed to
1 to the ground. | the Diwheel will o th e Pass c
It was then let | be calculated using the pea accurate
o0 and the times and control
fuccessive angles. models.
peaks were
counted.

Table 6.1.10: Damping Test Table

Step Response

T T T

T T

Amplitude

r r

:
0.5 1 1.5

2 25

Time (seconds)

Figure 6.1.10: Response of System to Step Input

104

Test No. | Test Procedure | Expected Actual Results | Pass/Fail | Comments
Results
Damping was
Use Sisotool in | Controller not obtained Once the
from actual .
MatLab to allows system to | encoder is
. . sliding weight :

1 determine attain steady Svstemm. SO Fail working we
controller for state quickly e¥fec ti\;e can obtain an
linear sliding when step is accurate
system applied controller controller

y) ' could not be ‘
determined.

Controller
was
converted

Use Sisotool in Controller Controller from

MatLab to continuous to

. allows system to | allows system .
determine)) discrete and
attain steady to attain steady)
2 controller for . . Pass implemented
. state quickly state quickly :
determining . . into
. when step is when step is .
the position of aoplied applied programming.
sliding weight. | “PPHE% ppHeC. MatLab code
can be found
in Appendix
D.3.

Table6.1.11: Controls Testing

105

6.2 Electrical Component Testing

The electrical component testing involved testing the various parts that make up the
electrical system. The motor drivers, wireless communications, DC motors, and sensors all
needed to be tested before system integration. Once individual components were successfully
tested, they moved on to system integration.

6.2.1 Wireless Receiver/Transmitter

106

Test | Test Procedure | Expected Actual Result | Pass/Fail | Comments
No Result
Wireless
Segd an RE DI.N RF LED lit up transmitter and
1 arbitrary value | (Received) showin Pass receiver are in
to the Wireless | LED indicator successg svnc and read
Inventors Shield | should light up Y Y
for data
. Red LED turns RF LED is lit
Send a specified o2 - .
alue to on when “2” is LED did not . 1nd1(;at10n
2 Xr duino to licht entered and turn on Fail received data,
0 LED & turns off when but value is not
upa “1” is entered being received
Send a specified Need to use
value to Red LED turns gf?vﬁlel;nze d Hardware Serial
Arduino to light | on when “2” is as pressed Pins unless
3 up an LED. entered and Z‘; d El rned off Pass specified
This time using | turns off when hen 1 was otherwise in
the Hardware “1” is entered Wresse d W Arduino
Serial Pins P program

Table 6.2.1: Wireless Communication Components Testing Procedures and Results

Figure 6.2.1: Wireless Communication Components Test

6.2.2 Drive Wheel Motor Drivers

Test | Test Procedure | Expected Actual Result | Pass/Fail | Comments
No Result
LEDs turns on | LEDs turns on
Use LEDs to when in when in
simulate motor | forward forward Ready for
1 direction with direction and direction and | Pass motor
H-Bridge Motor | turns off in turns off in integration
Driver 1A reverse reverse
direction direction
Motors turn on | Motor turned
Send an enable | . ! .
. in the desired on in the .
signal to motors | . . Possibly not
direction when | correct .
2 to turn them on o Fail enough power
. forward direction but :
with 1 12V . to drive motor?
batte command is only ran for a
ry entered few seconds
Send an enable | Motors turn on | Motor driver
signal to motors | in the desired | exploded, Motor driver
3 to turn them on | direction when | computer Fail not rated for the
with 2 12V forward turned off, high current
batteries in command is and Arduino draw of motors
series entered shorted out

Table 6.2.2: H-Bridge Motor Driver 1A Test Procedures and Results

Plan for Correcting:

The H-Bridge Motor Driver 1A is not rated for the 16A current draw of the DC motors. A

new motor driver will be selected that can handle 24V as well as at least 20A of current.

Figure 6.2.2: H-Bridge Motor Driver 1A Testing

Corrected testing with new Pololu High-Power Motor Drivers

108

Test | Test Procedure Expected Actual Result | Pass/Fail | Comments

No Result
Test both motor Square wave
drivers shpuld bpcome
simultaneously W.lder witha No Signal was)

. higher PWM . . Check reset in

1 with DC power value and flip appearing on Fail programming
glslz Il)lll}; 223 e (No polarities when oscilloscope
Load Tes t)p direction is

changed
Test both motor Square wave
drivers should become Signal was
. wider with a)
simultaneously . changing but Check soldered
. higher PWM . .

2 with DC power . was very Fail connections of
supply and value and lip inaccurate and wires
Osrz:ri)ll};sco e (No polarities when nois
Load Tes t)p direction is M

changed

Square wave
Test both motor Square wave became wider
drivers shpuld bpcome with a higher

. wider with a
simultaneously . PWM value Ready for
3 with DC power higher PWM and flipped Pass system
P value and flip PP >y .
supply and .\ polarities integration
Oscilloscope (No polarities when when the
P direction is o

Load Test) changed direction was

changed
Test motor
S(r)lnvti;s peed Motors ?r/llgrte(z);:e dand Adjust levels of
functionalit increase and decreased speed in

4 with 2 DC Y decrease speed speed based Pass program for
motors and 2 based on PWM Orl’)l PWM enhanced
12V batteries in signal received signal given control
series

Make sure
Test motor
i S Motors motors do not
driver direction .
control Motors turn in | changed change
) . the desired direction directions
5 functionality o Pass .
with 2 DC motor direction bazed based on d‘[he Xl(sltélntafneously.
on comman comman safety
sand% 12.V . given measure in
batteries in series
program

Table 6.2.3: Pololu High-Power Motor Driver 24v23 CS Test Procedures and Results

109

Figure 6.2.4: 23A Motor Driver Testing

6.2.3 10A Motor Driver Arduino Shield

110

Test | Test Procedure | Expected Actual Result | Pass/Fail | Comments
No Result
Connect shield | Motor turns
. Motor turned
to Arduino and | forward or
. the correct Ready to test
batteries. Use backward R
1 . direction Pass connected to
on board test depending on i
s . | when buttons chain and load
buttons to test which button is
. were pressed
connectivity. pressed.
Connect motor . Ready to
. Motor spins
to chain and and pulls Motor moves measure
2 weight to test its b weight along | Pass distance and
o weight along .)
ability to move track nicely time taken to
. track X
weight move weight
Set motor to full
speed and time Takes about 2
. Motor moves
how long it s seconds to .
weight at a . Implement into
3 takes to get . move weight | Pass
. constant time program
weight from across each
: each test !
one side to the time
other
High speed
A certain speed | seems to be
Manually .
is better than the only one
control motor to Test the
4 another for capable of Pass
see what speed) . encoder
) moving the moving
is necessary : :
weight weight
smoothly
M th :
easure the HyperTerminal System stops
motor turns responding . Check the
5 reads back Fail .
form the . after motor interrupt
. motor position
encoder signals starts
Measure the
motor turns Interrupt is not
. System stops .
form the HyperTerminal respondin allowing any
6 encoder signals | reads back p & Fail other
! : . after motor
after interrupt in | motor position starts commands to be
program has entered
been modified

Table 6.2.2: 10A Motor Driver Shield for Arduino Testing and Results

111

Figure 6.2.4: 10A Motor Driver Arduino Shield Testing

112

6.2.4 IMU Sensor

113

Test | Test Procedure | Expected Actual Result | Pass/Fail | Comments
No Result
Setup IM.U HyperTerminal | HyperTerminal Now need to
sensor with T . translate raw
basic program will display displayed data into angle
values values
1 downloaded . . Pass value that can
. corresponding | corresponding .
from internet . . be used in
and get raw to yaw, pitch, | to yaw, pitch, control
and roll angles | and roll angles)
values algorithm
Setup IMU .
sensgr with HyperTerminal '
basic program will display HyperTerminal
) downlrz) . dge d angle values displayed error Fail Check raw
from internet corresponding | saying could values again
and oot anole to yaw, pitch, | not connect
Valufs & and roll angles
Setup IM.U HyperTerminal .
sensor with will displa HyperTerminal
basic program alues play displayed 0Os Trv another
3 downloaded vat . and was not Fail Y
. corresponding . program
from internet . reading any
and oot to yaw, pitch, dat
get raw ata
values and roll angles
Setup IM.U HyperTerminal .
sensor with a T HyperTerminal
will display disnlaved 0
program alues Isprayec s Chip may be
4 downloaded N . and was not Fail P 0 Y
. corresponding . broken?
from internet . reading any
and get raw to yaw, pitch, data
values and roll angles

Table 6.2.4 Triple Axis Accelerometer and Gyroscope Breakout Board Testing and Results

114

Figure 6.2.5: IMU Sensor Testing

6.2.5 Arduino Uno Microcontroller

115

Test | Test Procedure | Expected Actual Result | Pass/Fail | Comments
No Result
A character is Arduino is
Write a simple | entered and the | Arduino :
) . . functional and
1 program to Arduino replied with Pass ready for
verify Arduino | replies with character is Y
g . « . 1 system
functionality received was sent . .
Integration
character sent
Attach the . Programs the Can it be
Arduino shields : . .
Arduino with | Upload did not . programmed
2 and test to see Fail .
i the new go through without the
if it can be .
program shields?
programmed
Upload same Progr.ams the Shields must be
program but Arduino with | Upload was
3 . . Pass removed to be
without shields | the new successful
reprogrammed
attached program
Assign pins for Take out
all Pins are Arduino Uno optional
4 inputs/outputs | available for does not have Fail operations such
of motor each the required as current
drivers and component number of pins sensors and
motor encoder fault flags
Assign p s Pins are There were Use fuses to
after removing . . :
. available for enough pins avoid over
5 certain . Pass .
) each for operation current without
functions of the
. component of all systems current sensors
motor drivers

Table 6.2.5 Arduino Uno Microcontroller Testing and Results

Figﬁre 6.2.6: Arduino Uno Testing

116

6.3 Diwheel System Testing

After the mechanical and electrical components were integrated together, diwheel system
testing could begin. This section of testing included all of the functionality tests. The diwheel
was tested to make sure that it would respond correctly to given commands and to ensure the
mechanical and electrical systems would run smoothly in unison.

6.3.1 Systems Integration

Figure 6.3.1: Initial Integration of the Electrical and Mechanical Systems

117

Test No. | Test Procedure | Expected Results | Actual Results | Pass/Fail | Comments
Prop up the
diwheel so that
the wheels are | Both wheels One wheel
1 free to rotate should spin could not keep Fail
and give the freely in the a consistent
command for forward direction | speed
forward low
speed
Place the
diwheel on the | The diwheel Diwheel began
ground and should drive circling in a
2 give the forward at a low | counter Fail
command for speed in a clockwise
forward low straight line direction
speed
Prop up the
diwheel so that Each wheel
the wheels are Each wheel kept a
free to rotate consistent
. should keep a
3 and give the consistent speed speed when Pass
command for each of the
. when freely X
each direction o various
at each speed Spining commands
greater than were given
one

Table 6.3.1: Initial system tests

Plan for Correcting:

The left wheel was experiencing more than normal friction due to the guide wheels while
it lacked the necessary friction between the diwheel and bike rim in order to transfer smooth
power. Both the guide wheel tensioner and the drive wheel axel assembly required adjustments.
The guide wheel tensioner needed to be slightly loosened while the drive wheel required more
force to be exerted against the bike rim.

118

Figure 6.3.3: Guide Axel Tensioner

6.3.2 Drivability Testing

119

command for
forward speed

a straight line

veered left

Test No. | Test Procedure | Expected Results | Actual Results | Pass/Fail | Comments
P}ace the The diwheel The vehicle
diwheel on the . .
round and should drive drove relatively
4 give the forward at the straight and Fail
£ desired speed in | only slightly

Plan for Correcting:

Table 6.3.2: Initial drivability test

The diweel still did not drive straight when the forward command at various speeds was
given. The mechanical system could not be adjusted to improve this problem, so the decision
was made to alter the programming of the controller. The new program would implement active
turning so that when the diwheel was cruising and wanted to turn, or adjust for the error, it would
drop the either the left or the right voltage by a certain percentage. For the forward command the
right wheel was permanently reduced by 5% in order to counteract the diwheel from veering.

Initiate a turn

Test No. | Test Procedure | Expected Results | Actual Results | Pass/Fail | Comments
The vehicle
P}ace the The diwheel traveled along
diwheel on the . a much
ground and should drive straighter path .
5 : forward at the " | Pass/Fail
give the . . It also could
desired speed in
command for 4 straicht line now correct
forward speed & itself and

Table 6.3.3: Secondary drivability test

Figure 6.3.4: Testing the updated control system

Plan for Correcting:

The diwheel was becoming more controllable with the new programming and became
even better with operator practice. The programming still produced a controllability that was
rough around the edges. The new program will be refined with acute changes that will result in a
more stable system. A greater variety of speeds will be implemented, along with different levels
of turning. For the lower speeds the turning will drop either wheel 30% power, the medium
speeds will drop either wheel 20% power and the top speeds will only drop either wheel by 10%

120

power.

Test No. | Test Procedure | Expected Results | Actual Results | Pass/Fail | Comments
Give the The vehicle is
command for The diwheel now
forward and should drive at moderately

6 adjust the the desired speed | controllable by | Pass/Fail
speed and and direction of | the operator,
turning the operator but still is not
accordingly superb
Continue
testing diwheel | Diwheel moves While turning,
movement and | and keeps .

. . diwheel . Check

7 check the chassis swing stopped Fail circuit

specifications | below 15 pp: Y
. working

for its degrees
functionality

Table 6.3.4: Final drivability test.

121

122

The circuitry was checked and no faults could be found. The motors were connected directly to
the batteries to check motor/battery functionality. Both motors and batteries were operational.
The digital side of the components was checked and everything was function. The motor drivers
are the only components not responding and may have shorted out. The reason is unknown as a
simple spin had been performed many times previously.

Fiure 6.3.5: Final controllability testing

6.3.3 Linear motor function testing.

123

Test | Test Procedure | Expected Actual Result | Pass/Fail | Comments
No Result
Connect shield | Motor turns
. Motor turned
to Arduino and | forward or
) the correct Ready to test
batteries. Use backward N
1 . direction Pass connected to
on board test depending on :
. . | when buttons chain and load
buttons to test which button is
. were pressed
connectivity. pressed.
Connect motor . Ready to
. Motor spins
to chain and and pulls Motor moves measure
2 weight to test its b weight along | Pass distance and
o weight along .)
ability to move track nicely time taken to
. track X
weight move weight
Set motor to full
speed and time Takes about 2
. Motor moves
how long it s seconds to .
weight at a . Implement into
3 takes to get . move weight | Pass
. constant time program
weight from across each
. each test !
one side to the time
other
High speed
A certain speed | seems to be
Manually .
is better than the only one
control motor to Test the
4 another for capable of Pass
see what speed . . encoder
) moving the moving
is necessary : :
weight weight
smoothly

Table 6.3.4: Specifications tests.

124

1
e Ll

bk
o
dbastls

abe

Figure 6.3.6: Leveling system

6.4 Specifications Testing

125

Specification testing was an important section of testing because it would prove that the diwheel
was constructed to perform as initially desired. The design specification list was used to

determine the test that would be carried out. These tests would assess the performance of the
diwheel and ensure the proper functionality as an entire system.

Test No. | Test Procedure | Expected Results | Actual Results | Pass/Fail | Comments
Record the The diwheel is
weight of the expected to
! entire diwheel | weigh less than 26.2kg Pass
on a scale 30kg
Record the Batteries lasted
amount of time The diwheel past 30 minutes
2 the batteries batteries last at and spanned Pass
last for least 30 minutes | several days of
operation testing
The diwheel D.iwh.ee.:l The diwheel
1 be dropped sustainability of remamed
3 W pp a 0.5 meter drop | functional after Pass
from a height . .
of 0.5 metors w1thogt 10s§ of the impact of
functionality the drop test
Weigh the The attached The hardware
hardware, hardware will remained
attach it and remain secure secure and did
4 run the diwheel and will not not inhibit Pass
to ensure that | inhibit standard standard
the hardware functionality of | functionality of
remains secure the diwheel the diwheel
Diwheel testing The control
by using the system will Gyroscope and
gyroscope and stabilize the encoder were
5 linear leveling diwheel and not functioning Fail
system and keep the overall so test could
using the angle below 15 not be
desined degrees when performed.
controller accelerating

Table 6.4.1: Specifications tests.

6.5 Future Testing Plan

126

It has been determined that while controlling the diwheel from a computer and only
having the input of buttons to be pushed and released, the diwheel has reached its level of
controllability. In order for the vehicle to become superbly controllable there would have to be a
change in the user interface. This means a joystick or a gaming controller would have to be
implemented into the program. Theses controllers have the ability to administer a smooth signal
that can gradually increase, decrease and turn mechanical system.

o~

~u

‘/

-

&5

A

Figure 6.5.1: Xbox controller with joysticks.

Due to unforeseen complications with the motor drivers and the gyroscope, there were
some specifications testing that could not be completed. The tests that are listed below will be
left for the future mechanical engineering students.

Specifications

Proposed Testing Procedure

Diwheel maximum velocity of 7.3 m/s

Putting the diwheel into motion and then
timing how long it takes to travel a set distance
between two points

Diwheel maximum acceleration time of 3
seconds

Accelerate diwheel and calculate its actual
acceleration

Diwheel is equipped with a functioning failsafe
unit

Simulate loosing battery power, frequency
disturbance, and receiver being out of range
and ensure the failsafe is operating properly
under each circumstance

Table 6.5.1: Future Testing Plans and Procedures

127

Conclusion

In order to solve to problem of making a two-wheeled, mobile, durable vehicle on which
different hardware can be mounted and kept level, the team researched and designed a suitable
product for manufacturing. With the help of computer-aided design and computer programming,
we aim to construct our proposed model and test the functionality of it. The diwheel will be built

within budget and within the allotted time given by the client.

128

A. Appendix A: Project Management Plan

The Project Management Plan includes Work Breakdown Structure and Gantt chart. The
Project Management Plan shows what steps need to be taken as a team to achieve the final
product. The Work Breakdown Structure is a graphical representation of how the project is
broken down. It is broken down into sections such as the milestones and deliverables and then
each of those sections are broken down further into subsections. The Gantt chart is like a
timeline version of the Work Breakdown Structure. It shows the start and end date of each
portion as well as completion percentage and who is in charge of each section. The Project

Management Plan will make sure that the team stays on track with the deadlines.

129

A.1 Work Breakdown Structure

A work breakdown structure is a flow chart or tree representation of the Gantt Chart. It
shows the tasks that need to be finished in order for a project to be completed. The tasks listed
then have subsections that list the topics that the task must cover in order to be completed. For
this project there are the tasks of Define Client Expectations, Research, Product Design, Project

Management Documentation and Deliverables.

Diwheel
&)
[I [
Define Client Project Management Research Product Design Deliverables
Expectations Documentation B + L
=) =) — Customer Needs — Concept Development | Detailed Component
| Client | Team Process) Level Design
Communication Guidelines Cost - Focused Brainstorming
Solidworks
Email | Pairwise User Friendliness Gather Information
Comparison Chart - Internally & Arduino Program
Meetings Responsiveness Externally
— Objective Tree I Oral Communication
Clarify Mobility Systematically [i
— Problem Work — Narrow Down Presentations
Definition - BrSethlféjtc:I\:rv; L Existing Designs Ideas
Moroh Chart Mid-Semester
i — Wierph Lha Presentation
— Gantt Chart Chassis
Drive Train — Product Specifications Final Presentation
— Budget)
Controllers [~ Specifications L WWritten Cormmunication
. . 5]
L Relevant Theary — Needs-Metrics Matrix - Reports
Electric Mator —%System Level Design {% Milestones
Controllers Geometric Layout Milestone 1
Weight Transfer — Hetailsdl Design Milestone 2
— Required Components Milestone 3
[%J— Specifications Milestone 4
g hcsre:tt:msf - Design Histary File
- Subsy
Modules
Define
— Component/Circuit
Geometry

— Choose Materials
— Assign Tolerances

— Compile Subassemblies

— Control Documentation
Solidworks

Logic Flow Diagram

130

A.2 Gantt Chart

A Gantt Chart is a timeline representation of the Work Breakdown Structure. It provides
deadlines and durations for each task that was listed in the Work Breakdown Structure. For this
project the tasks that are listed in the Gantt Chart are Define Client Expectations, Research,
Product Design, Project Management Documentation and Deliverables. Each task has a deadline

in order to meet the final deadline of December 7, 2012.

E..

i}

131

Task Name

Duration

Start

End

T-.mn_nnmmmo-. To::u_mn.o: T-..o-..S. 7 Resources

r 2012
80ct12

12
M2 12Nov'2 19Nov'12 26Nov'2 3Dec'12

27 Aug 12 1 0ct'12

1 Diwheel 70 days 97312012 121712012 26% 0 4 . |
2 EDefine Client Expectations 70 days 9/312012 121712012 11% 0 4 R
3 G Client C icati 70 days 9/312012 1272012 0% 0 4 q
4 @ Email 70 days 9/3/2012 12712012 0% 0 Dennis |2 i
S m Meetings 70 days 91372012 12712012 0% 0 Dennis ¢)
6 |] Clarify Problem Definition 11 days 91712012 101142012 80% 1} Vanjoff e ———— |

7 EProject Management Documentation # days 9172012 11122012 83% 0 | . . |

8 v Team Process Guidelines 6 days 9172012 9/24/2012 100% 0 Dean

9 |V Pairwise Comparison Chart 6 days 912412012 10M1/2012 100% 0 Dean

10 |V Objective Tree 6 days 912172012 10172012 100% 0 Parisi

11 |/ Work Breakdown Structure 6 days 10/42012 104812012 100% [1} Parisi ———

12 | Gantt Chart 6 days 10/72012 10/8/2012 100% 0 MeLaug| [

13 @ Budget 6 days 114512012 1142/2012 0% 0 McLaughlin | i)

14 |/ |EResearch 11 days 112012 10112012 100% 0

15 || ECustomer leeds 11 days 91772012 10/112012 100% 0

16 |/ Cost 6 days 9/24/2012 10M1/2012 100% 0 Vanjoff

17 |« EUser Friendliness 11 days 917/2012 10/1/2012 100% 0

18 |/ Responsiveness 11 days 9172012 10/1/2012 100% 0 Vanjoff

19 | Mobility 11 days 972012 10M/2012 100% 0 Wanjoff

20 | ElExisting Designs 11 days 9172012 100% 0

21 |« Chassis 11 days 972012 10/1/2012 100% 0 Vanjoff

22 | Drive Train 11 days 972012 10//2012 100% 0 Vanjoff

23 | Cortrollers 11 days 972012 10M1/2012 100% 0 Pari

24 || ERelevant Theory 11 days 9172012 10/12012 0

25 |/ Electric Motor 11 days 972012 10/1/2012 100% 0 Vanjoff

26 |/ Cortrollers 11 days 9M7i2012 10M/2012 100% 0 Pari

27 |V Weight Transfer 11 days 91712012 10012012 100% 0 Yanjoff

10Dec'12

132

28 EProduct Design 31 days 1011512012 111262012 0% 0

29 E Concept Development 11 days 101512012 10292012 12 0% 0

30 @ Focused Brainstorming 11 days 10/15/2012 10/29/2012 0% 0 Dean

q @ Gather Information Internally & Externally 11 days 10152012 1012972012 0% 0 Yanjoff
M B Systematically Narrow Dowwn ldeas 11 days 10/15/2012 10/28/2012 0% 0 Dennis
m @ Morph Chart 11 days 10152012 102972012 0% 0 McLaughlin
34 EProduct Specifications 5 days 10/30/2012 11/512012 33 0% 0

35 Specifications 2days 1043072012 1013172012 0% 0 Wanjoff

36 B Needs-Metrics Matrix 5 days 10430/2012 11152012 0% 0 Parisi

37 [System Level Design 1 day 11/6/2012 11/6/2012 34 0% 0

38 @ Geometric Layout 1 day 11612012 11/8/2012 0% 0 Dean

39 ElDetailed Design days 117772012 11/26/2012 37 0% 0

40 ERequired Components 8 days 1172012 11162012 0% 0

41 @ Specifications 8 days 114712012 111672012 0% 0 Wanjoff

42 Create SubsystemsModules 8 days 11712012 1116/2012 0% 0 McLaugl

43 m Define Component/Circuit Geometry 8 days 1172012 1116/2012 0% 0 Parisi

44 m Choose Materials 8 days 11712012 1116/2012 0% 0 Yanjoff
ﬂ @ Assign Tolerances 8 days 11712012 1116/2012 0% 0 Dennis

46 Compile Subassemblies 8 days 114712012 111672012 0% 0 McLaughlin
47 E Control Documentation 6 days 11192012 11/26/2012 40 0% 0

48 B Solidworks 6 days 111972012 1172612012 0% 0 Dennis
Mwlq @ Logic Flow Diagram 6 days 111872012 1142612012 0% 0 Parisi

S0 ElDeliverables 60 days 9172012 121712012 5% 0

51 EDetailed Component Level Design 16 days 11/5/2012 11/26/2012 0% 0

52 @ Solidworks 16 days 114512012 1112612012 0% 0 Dennis
Mu.' B Arduino Program 16 days 114512012 1102602012 0% 0 Parisi

54 [Oral Communication 35 days 1011512012 12312012 0% 0

55 @ ElPresentations 35 days 1011512012 12312012 0% 0

.mm' @ Mid-Semester Presentation 6 days 101572012 105222012 0% 0 Yanjoff, Den...
ﬂ @ Final Presentation 6 days 1142312012 121372012 0% 0 Parisi, Dean, ...|
58 [Written C icati 60 days 9172012 121712012 9% 0

59 EReports 4 days 91252012 11/26/2012 22% 0

60 @ EMilestones 44 days 97252012 1172612012 22% 0

61 |/ Milestone 1 5 days 9/25/2012 100172012 8 100% 0 Dennis

62 B Milestone 2 6 days 104572012 10/15/2012 B1 0% 0 Dennis
m B 6 days 10/26/2012 111512012 62 0% 0 Dennis
N @ Milestone 4 6 days 111612012 11426/2012 B3 0% 0 Dennis

65 m Design History File 60 days 91712012 120702012 0% 0 Dennis

133

A.3 Statement of Work

A Statement of Work is a bulleted list derived from the Work Breakdown Structure. It
shows the tasks that need to be finished in order for a project to be completed. The tasks listed
then have subsections that list the topics that the task must cover in order to be completed. The
Statement of Work clearly shows who is in charge of ensuring completion for each of the given

tasks.

Construction of Design
¢ Construct Mechanical Components (Dean, Dennis, Vanjoff, McLaughlin)

* Construct Electrical Components (Parisi)

134
B. Appendix B: Detailed Design

B.1 Drawings

The detailed design drawings are crucial elements to the design of the product. They are
2-D representations of the 3-D model. These drawings include the detailed dimensions and

tolerances needed for the manufacturing of the product.

2068

THK 3.17§

51012.7' _.Uﬂ

™ Short Plate Frame **

- a1 CIORC Y

. L_t: -]
.08
] 1.0 = 12.0 ~|
UMIFSS QTMIEWER SPCATD: [hEk: " onue Ak
DWLSERS ART B Wl WIS BT SkARP 00 LarICAToRWEG l RIVEES:
SUBTACT Mk
oI M ACrS:
1rap
ABCUIAR
bawr SCKATURE DAt e
F AW
o
T
o
A AT OWG ko N a Ad
|
| | wnowr SCAIP I sk
o e o

135

UKIFSS QFRIPWER SHCITD: kL
DWIBS0KS ART B Wl WITIRS
SURTACT FER
FOIMPALCS

1Brap:

ABGUL AR

bawr SEkATURT oarr

DEAWK
ChrD

ARV

QA

WATTRL

wnGer

OrIUE AKD
BETAY SHARP
rocrs

0O kAT SCAIFDEAWRG ErvERK

e

" Guide Wheel

SCAIP 1L serTT L ar

A4

136

50.8

—a] aTHK 3.175

UkIFSS QTRIeWEr SPRCrI: ek OrIUE AkD
DWLS0RS ART B Wl WITIES IETAY SHARP
SURTACT FRER: roGrs
FOITEAWCIS:

(LIS

ABGULAR:

bawr SEMATURT oarr
DEAWh

o a WATTRLL

rir

Hardwaré

wnokr

SCAIP Il

ls— 25.4 —an]
0O BAF SCAITDRAWRG ErvEoe

Table Leg long oneflpdc

SeAT 1ar

137

—)

UkIFSS QTRIeWEr SPRCrI:
DWLS0RS ART B Wl WITIES
SURTACT FRER:
FOITEAWCIS:

(LIS

ABGULAR:

bawr
DEAWh

ek

SGkATURT

]

ORIUE AkD
r
hOrAL Shasp 0O kAT SCAITDFAWRE ervEnK
roars
Dare e

Hardware Table Leg(upddted)

wnokr SCAIP Il SerT 1ar

138

451.2

292.1

UkIFSS QFRIPWEr SHCIID:

D MLsObs AR B Wl WITIRS
SURTACT FER:

FOIMPAbCS:

TBrag

ABGULAR

ek

OMIUE AkD
BRTAY SHARP
rnors

0O BOF SCAIFDRAWRG I Frvenk

bawr

oarr
—

e

WATTRLI

owWG ko

Plate

Ad

wWnGer

E l kT oiar

139

3%2.7

1 THK

457.2

UKIFSS QTP WER SPTCIID:

L1

D rbEaks ART B wEIWITIES

SUBTACT FER:
FOITRAKCES: dww
1Brag:
ABGUI AR

OrIUE AkD
BETAY ShaARP
roors

0O KOF SCAITDRAWEG I ErvEQk

bawr
o

SEbaruer
——

oarr
—

e

WATTR LI

PLEXIGLASS

OWG kO

Housing

Ad

wnoer:

SCAIl 10

Cserraar

140

PROPRIETARY AND CONFIDENTIAL
THEINFORMATION CONTAINED INTHS.
DRAVING B THESOLE PROPERTY OF
<INSERT COMPANY HAME HERE>. ANY
REPRODUCTION IN PART OR 48 A& WHOLE
WITHOLE THEVRMTEN PERMBSION OF
<IHSERT COMPANY NAME HERE> §
PROHIEMED.

HEXT A3SY

APPLICATION

4

LSED OH

UNLESS OTHERWEE SPECIFIED:

DIMENSIO NS A RE IN 1N CHES
TOLERA N CES:

FRACTIOHA LS
ANGULAR: W& CHE BEND 3
TWO PLACE DECIMAL &
THREE PLA CE DECIMAL 3

INTERPRET GEOMETRIC
TOLERANCING PER:
MATERIAL

FINSH

DO HOTSCALE DRAVING
3

DRAWN
CHECKED
ENG APPR.
MFG APPR.
Qs

CO MMENTS:

TITLE:

SIZE DWG. NO.

A Long Axel

SCALE:

5 WEIGHT:

SHEET 1 OF 1

141

2.7

UKIFSS QTR WEr PO et
D resks ART B Wl WITIes
SURTACT FRER:
FOIreabCrs:

1Brag

ABGULAR

bawr SGkarURr oarr

DEAWk
ChtD

AT

QA

AR

wnokr

OrIUE akD
BETAY ShARP
rors

R
P
Pad
DO HAT SCAITDRAWEG FrveEoe
rir
“* Drive Wheel Axel **
iCalr gy iefTT 1 Qr

142

451.2

292.1

UkIFSS QFUMPWEr SPICIrD:

D MMSOkS AR B Wl I WITITS

SURTACT FBER:
FOIMABCS:
I1Brag
ABGULAR

LT

BETAY SHARP
rors

0O KAr SCAITDRAWRG I ErviEoe

bawr
e

SGkaruEr
—

LEUL

YD

wra

i

T

WATTRLI

OWG kO

Plate

Ad

WhnGkr

SCAIP 10 l‘l'"' rar 1

143

144

0O MO EEAINCEA Y T

T Linear Shaft Mount™

“HER A oW 10

B.2 Specifications

Chassis Assembly Parts

Figure B.2.1: Long Axel Collar

145

1/4"-20 Set Screw

me"

©

MMASTER-CARR. -

wneex 9414711

TtpLTwa, 1
© 2007 McMastes-Car Supply Company

Black-Onide Steel
Set Screw Shaft Collar

Lisioces clerwies iceciied, sk w = inchas. Informsdion | hia darwing i provided for ieference oy

LUisioces clerwies iceciied, sk w = inchas. Informsdion (= hia darwing i provided for ieference oy

Leveling Assembly Parts

Figure B.2.3: Motor

147

www pololu.com

V& B =)

available with an inteqr: n I

29:1 Metal Gearmotor 37Dx52L mm

Pololu item #: 1103 23 in stock

Price break Unit price (US$)

1 24.95
10 21.20
50 18.66

backorders allowed
Add to wish list

Key specs at 12 V: 350 RPM and 300 mA free-run, 110 oz-in (8 kg-cm) and 5 A stall.

Select options: | (any gear ratio) [+] EES

% Compare all products in 37D mm Gearmotors

This 2.05" x 1.45" x 1.45" gearmotor is a powerful brushed DC motor with 29:1 metal gearbox intended for operation at 12 V. These units have a 0.61"-long, 6 mm-diameter D-shaped output shaft. This gearmotor is also

Gearmotor Options

Specifications (12) Pictures (6) Resources (0) FAQs (0)

www! .pn‘c!u,co‘ln www, ipo o!u «
Speed | Stall Torque | Stall Current
Gear Ratio| @ 12V @12v @ 12v With Encoder | Without Encoder

19:1 500 RPM| 84 oz-in 5A 37Dx52L mm 37Dx52L mm
29:1] 350 RPM 110 o0z-in S A 37Dx52L mm 370x52L mm
50:1] 200 RPM 170 o0z-in 5 A 37Dx54L mm 37Dx54L mm
67:1 150 RPM 200 oz-in 5 A 37Dx54L mm 37Dx
100:1| 100 RPM 220 oz-in 5 A 37Dx57L mm 37Dx57L mm
131:1| 80 RPM 250 oz-in 5 A 370x57L mm 370x57L mm

This powerful brushed DC gearmotor is available in six different gear ratios. A version with an integrated encoder is also available.

Figure B.2.4: Motor Dimensions

31
www.pololu.com

~

36.8

30

-56=

241

148

Figure B.2.6: Gear

(] = IO

MGMASTER-CARR. “&- | .35 motor gear

v MEmasier.com Steed Finished-Bore
© 2003 McMaster-Canm Supply Company Sprocket for ANSI #25 Roller Chain

Uisioces clerwies iceciied, sk w = inchas. Informsdion | hia darwing i provided for ieference ody.

149

Figure B.2.7: Sprocket

VA
/\ 7_
1

1/4" Pitch

NMASTER-CARR) 0| | isie 2737T107

@ 2008 McMasterCan Supply Company | Speocket for ANSI #25 Roller Chain
Srines oherwier ipecied, Smarveione s Semwieg M procdded o 1ERTENCE only .

Figure B.2.8: Rail Mount

Wheels and Drivetrain Assembly Parts

Figure B.2.9: 250W Motor

150

250W Motor - 24 Volts (Style: MY1016)

Price: $32.00
Availability: In Stock
Model: MOT-106100
Average Rating: Not Rated

Qs

Click to enlarge

Description Additional Images (0) Reviews (0) Related Products (2)

MY1016 24 Volt, 250 Watt, 2650 RPM, 13.7 Amp, permanent-magnet motor.

e 11 tooth sprocket for #25 chain.
e 12 gauge power leads with standard 1/4" push-in connectors.

Mounting bracket measures 4-1/2" x 2-1/8" with 4 threaded mounting holes.

151

Figure B.2.10: 250W Motor Specs.

Basic Info.

Model NO.: MY1016
Export Markets: Global

Additional Info.

Packing: Carton
Origin: China Mainland
Production Capacity: 100000PCS/Month

Product Description

UNITE Motor ElectricBike Motor Electric Scooter Motor Brush Motor
MODEL MY1016

Permanent Magnetism Direct-Current (DC) Motor

Suitable for 24V250W Power

We provide all kinds of ATV Quad Bike Parts, Dirt Bike Parts, Electric Bike Parts, Electric Scooter Parts and etc.
Electric Bike Part including Electric Motor, Electric Controller, Electric Charger, Battery and etc.

ATV And Dirt Bike part Including Complete Motorcycle Engines (Lifan Engines Yingxiang Engines Zongshen Engines
Loncin Engines, Motorcycle Plastic Kits, Motorcycle Carburetors, Motorcycle Tyres, Motorcycle Rims, Plastics and Oil tank,
Motor Bike Seats, Electric Bike Chains, Motorcycle Chains, Motorcycle Sticker Decal, Absorb Spring, Brake Disc,
Handlebars, Motorcycle CNC part, Air filters, Bearings, Assembly Switches, Headlight, Tail light, Clothes and Apparences,
Motorcycle Electric Part (CDI, Ignition Coil, Regulator, Relay)and etc.

We appreciate quantity order and we also accept small orders, fast delivery by air and other ways shipping.
Accept OEM orders
Any other parts you after please contact

Model (MY 1016

‘Standard |200W 24V/36V | 250W 24V/36V | 300W 24V/36V | 350W 24V/36V
|No-load currency/A |£1.5/1.0 1£1.6/1.2 £1.8/1.4 |£2.0/1.4
No-load rate speed /rom 3300 13350 3400 3450

'Rating Torgue/N'm 10.70 10.90 11.04 11.22

Rating speed /rpm 12700 12750 12750 12750

|Rating currency/A £10.6/7.1 £13.4/8.9 £16.0/10.7 <18.7/12.5

| Efficiency/% | 276 | 278 | 278 | 278

Use | Electric Scooter / Small Scooter

Figure B.2.11: Drive Wheel

S AW TR

fixtureworks

Workhelding Technologi

= Material Handling > Rollers

152

> Shaft Drive > DuraSoft

ESECY

172 in 1D 548 in 1D

3/4 in ID 1in 1D

DuraSoft® Shaft Drive Rollers - Steel Insert - 1/2 in I.D. - Inch

PartStream.NET®

To activate, =¢

:

DR-9754-20-EX500:DURASOFT® ROLLER - 1/2 IN
SHAFT DRIVE - 20 DUR NEOPRENE - 4.00 IN DIA X
0.92 IN WIDE

ey 250 | 194 501/.505 1
DR-502-35UR-EX500
250 | 1.4 501/.505 1
DR-502-80UR-EX500
250 | 1.94 501/.505 1
DR-502-80UR-EX500
250 | 1.94 501/.505 1
DR-502-95UR-EX500
400 | 92 501/.505 1
DR-9754-20-EX500
400 | 92 501/.508 1
DR-9754-35-EXE00
400 | 92 501/.505 1
DR-9754-20W-EX500
400 | 92 501/.508 1
DR-9754-35W-EX500
400 | 92 501/.505 1
DR-9754-35UR-EX500
QB 4.00 92 501/.508 1

1
‘D |
.'C‘
LT ¢
E - -- B -

MANUFACTURED IN USA

25 | 50 Urethane 35 -
25 | 50 Urethane 80
25 | 50 Urethane 80 —
25 | .50 Urethane 95 (caD)
.25 50 Neoprene 20 :
.25 50 Neoprene 35
25 | 50 Nitrile 20
25 | 50 Nitrile 35
25 | .50 Urethane 35
25 | 50 Urethane 80 Y

‘CAD Download’ o1 '3D ON’

) ean (9 zoow (9 rorare

PRESS ANY KEY TO EXIT HYPERVIEW

3DON

Figure B.2.12: Drive Wheel Gea

153

McMASTER-CARR, -

wween 2737T146

Tty mcmasier.com
© 2003 McMaster-Cam Supply Company

Steed Finished-Bore
Sprocket for ANSI #25 Roller Chain

Uisioces clerwies iceciied, sk w = inchas. Informsdion | hia darwing i provided for ieference ody.

154

Figure B.2.13: Battery

E-Scooter 24V System Battery Set

Our Price: $43.80 qt:
u

Availability: Shipsin 24
Hours

SRR ey

Eilke 0

Description

Terminal Length Width Height Qty Weight (Lbs)

24V System F2 12.00 12.00 5.95 3.86 3.70 2 15.84

v

The brand new replacement battery set for the E-Scooter 24V System includes 2 batteries - NB12-12 (12 Volts

12.0 AH). You must use the existing cables and hardware to connect your replacement electric scooter

batteries.

The E-Scooter 24V System replacement batteries have the following characteristics:

High Rate Discharge Design
Performance Guaranteed
Brand New and Factory Fresh
In Stock and Same Day Shipping
Professional Customer Support
1 Year Warranty

If you need more help with purchasing E-Scooter electric scooter replacement batteries, please call our
customer service department at 1 (800) 657-1303 or email us.

Qur staff consists of experienced and knowledgeable battery specialists. We have extensive resources to provide
you with any electric scooter replacement battery.

If you want to set up a corporate or government account, feel free to email us. For larger quotes please fill out a
Request for Quote (RFQ) form. Since we have access to different suppliers it is particularly useful to provide us
with the type of application to better match your performance requirements.

155

B.3 Parts List and Budget

156

Weight

Part Description Part Name Price (8) |(kg)

Drive Motor (X2) 250W Motor - 24 Volts (Style: MY1016) $100.15 3
Steel Finished-Bore Roller Chain Sprocket for

Drive Wheel Gear (X2) #25 Chain, 1/4" Pitch, 22 Teeth, 1/2" Bore $15.14 0.239
Standard ANSI Roller Chain #25, Single

Multipurpose Chain (6ft) Strand, 1/4" Pitch, .13" Dia $22.38 0.2617
Solid Roller - 1/2 in Shaft Drive - 60 Dur

Drive Wheel Neoprene - 4.00 in Dia X 0.92 in Wide $103.16 0.7385

Battery Ezip Scooter eZip 900 Battery Set $61.68 7.7

Battery Charger 12 Volt 2 Amp Battery Charger $20.87

Drive Wheel Axel 1/2 inch Dia. 1018 Cold Finish Steel Round $0.00
Stamped-Steel Mounted Ball Bearing—-ABEC-1

Drive Wheel Axel Bearings (X4) |2-Bolt Base Mount, for 1/2" Shaft Diameter $43.80 0.7252

Tensioner Bolt (X2) 1/4-20 Bolt - Tensioner $8.00 0.0655
Black-Oxide Steel Set Screw Shaft Collar 1/2"

Top Long Axel Collars Bore, 1" Outside Diameter, 7/16" Width $1.68 0.0632

Guide Wheel (X6) 1 ft Delron Stock 2.5" Diameter $25.00 1

Rim (X2) suncrl8 $50.00 2

Tire (X2) 26 x 1.5 Amerityre Solid Rubber $100.20 1
3/8 inch Dia. 1018 Cold Finish Steel Round, 2ft

Idle Axel length $2.24 0.25
Black-Oxide Steel Set Screw Shaft Collar 3/8"

Idle Axel Collar (X4) Bore, 3/4" Outside Diameter, 3/8" Width $2.88 0.0592
Steel Finished-Bore Roller Chain Sprocket for

Idler (X2) #25 Chain, 1/4" Pitch, 14 Teeth, 1/2" Bore $12.12 0.0476
SAE 841 Bronze Flanged-Sleeve Bearing for

Idle Bearings (X4) 3/8" Shaft Diameter, 1/2" OD, 1/4" Length $2.80 0.0142
Hardened Precision Steel Shaft 3/8" Diameter,

Rails (X2) 12" Length $12.12 0.3424
SAE 841 Bronze Flanged-Sleeve Bearing for

Linear Bearing (X2) 3/8" Shaft Diameter, 5/8" OD, 1" Length $3.88 0.0486

Leveling Motor 29:1 Metal Gearmotor 37Dx52L mm $24.95 1

Leveling Motor 19:1 Metal Gearmotor 37Dx52L mm with encoder $40.91 1

Leveling Motor Mount (1ft) 1/8 X 1-1/2 Hot Rolled Steel Flat, 2ft length $3.06
1 x 1 Square Bar Hot Rolled A-36 Steel

Mass Plate Square, 2ft length $8.84 1
Steel Finished-Bore Roller Chain Sprocket for

Gear motor sprocket #25 Chain, 1/4" Pitch, 9 Teeth, 1/4" Bore $7.95 0.0098

157

.190 (3/16) thick 3003-H14 Aluminum Plate,
Plate 1ftx2ft $30.06 2
Arms 1/8 X1 Hot Rolled Steel Flat, 6t $8.80 1
Plate Frame 1/2 X1/2 X 1/8 Steel Angle A-36 Steel Angle $10.92 1.5
Multi Purpose Axel Steel Drive Shaft 1/2" OD, 8ft length $16.08 1
Optically Clear Cast Acrylic Sheet 1/16" Thick,
Housing (X2) 24" X 24" $30.06 1.49
Hardware Table Legs Machined $0.00 0.1
Hardware Table Legs Machined $0.00 0.1
Hardware Table Legs Machined $0.00 0.1
Hardware Table Legs Machined $0.00 0.1
Hardware plate Machined $0.00 0.1
Arduino/Breadboard NA $31.99
Wireless RF USB Dongle RFD21807 $75.00
Wireless Inventor Shield RFD21815 $30.00
Pololu High-Power Motor
Driver 24v23 CS 1456 $125.90
10A DC Motor Driver Arduino
Shield RB-Cyt-116 $19.06
Gardner Bender 20 Amp Single-
Pole Toggle Switch GSW-11 $7.94
Fuse Holder $5.00
60 Piece AGC Glass Automotive
Fuse Set 67962 $5.99
H-Bridge Motor Driver 1A COM-00315 $2.35
Double BTS Motor Driver BTS75960B $40.00
Triple Axis Accelerometer &
Gyro Breakout - MPU-6050 SEN-11028 $39.99
TOTAL: $1,152.95 28.05

158

C. Appendix C: Arduino Sketch

The Arduino Sketches are what control the entire Diwheel and its movement. Several
revisions were made and the two majorly changed codes are located in this Appendix. The first
was tested and functioned as desired. The second had revisions made to it that have not been

tested due to the system failure during testing.

C.1 Initial Diwheel Program

[******Senior Capstone Design Diwheel Program 2.0********//

/*

Author: Christopher Parisi

Organization: California Baptist University College of Engineering

Code has been tested and works for controlling the diwheel

Baud Rate: 9600 (Arduino Standard)
Use either HyperTerminal or Arduino Serial Monitor for Control

CAUTION! When controlling Diwheel, be sure not to change motor direction instantaneously.

Back EMF can harm the motor drivers and permanently break them.

Controls for Diwheel
w: forward

: backward

:left

: right

: spin counter-clock wise
: spin clock wise

: stop

: start system
reset system

: 10% Speed

: 20% Speed

: 30% Speed

: 40% Speed

: 50% Speed

: 60% Speed

: 70% Speed

: 80% Speed

: 90% Speed

: 100% Speed

FOOWOoONOOUPRPWN_TQX DO OO ®

/lArduino Pin Assignments

const int LM_DIR = 12; /IDirection control for the linear motor
const int LM_PWM = 3; /IPWM Signal for speed control of linear motor
const int LM_EncA = 2; /ILinear motor encoder A

const int LM_EncB = 5; /ILinear motor encoder A

const int M1_DIR = 6; /[Direction control for Motor 1

const int M2_DIR = 7; /IDirection control for Motor 2

const int M1_RESET = 8; //IReset signal for Motor Driver 1

const int M2_RESET = 9; /IReset signal for Motor Driver 2

const int M1_PWMH = 10; /IPWM signal for speed control of Motor 1
const int M2_PWMH = 11; /IPWM signal for speed control of Motor 2

/IOther Variable Assignments

[Ivolatile unsigned int encoderPos = 0;

int command = 0; //User input from Serial Terminal
char dir ='f';

int spd = 0;

char Im_dir ='f};

159

char Im_pos ='b";

void setup()

/lcode section from from http://playground.arduino.cc/Main/RotaryEncoders#Example1

pinMode(LM_EncA, INPUT);

digitalWrite(LM_EncA, HIGH); // turn on pullup resistor

pinMode(LM_EncB, INPUT);

digitalWrite(LM_EncB, HIGH); // turn on pullup resistor
/lattachinterrupt(0, doEncoder, CHANGE); // encoder pin on interrupt O - pin 2

Serial.begin(9600); //9600 Baud Rate

Serial.printin("Starting Up...");
pinMode(LM_DIR, OUTPUT);
pinMode(LM_PWM, OUTPUT);
/lpinMode(LM_EncA, INPUT);
/lpinMode(LM_EncB, INPUT);
pinMode(M1_DIR, OUTPUT);
pinMode(M2_DIR, OUTPUT);
pinMode(M1_RESET, OUTPUT); //defualt HIGH
pinMode(M2_RESET, OUTPUT); //default HIGH
pinMode(M1_PWMH, OUTPUT);
pinMode(M2_PWMH, OUTPUT);

stopmotors();
Serial.printin("System Ready.");

}

void loop()

/* Fault Flags removed due to lack of /0O Pins on Arduino
if (FF1Motor1 == LOW && FF2Motor1 == HIGH) || (FF1Motor2 == LOW &&

FF2Motor2 == HIGH)) //Short Circuit
{

stopmotors();

Serial.printin("Short Circuit Detected. Stopping Diwheel");

160

}
else if((FF1Motor1 == HIGH && FF2Motor1 == LOW) || (FF1Motor2 == HIGH && FF2Motor2 == LOW))

/IOver Temperature

stopmotors();

Serial.printin("Over Temperature. Stopping Diwheel");

}
else if (FF1Motor1 == HIGH && FF2Motor1 == HIGH) || (FF1Motor2 == HIGH && FF2Motor2 ==

HIGH)) //Under Voltage

stopmotors();

}
¥

Serial.printin("Under Voltage. Stopping Diwheel");

if (Serial.available() > 0)
{

command = Serial.read();

switch(command) {

case 'w'": //forward
if (dir =="b" || dir =="'s")

stopmotors();
delay(1000);

}

digitalWrite(M1_DIR, HIGH); //Current flows from OUTA(+) to OUTB(-)
digitalWrite(M2_DIR, HIGH); //Current flows from OUTA(+) to OUTB(-)
dir = 'f};

speedControl(dir, spd);

break;

case 'a": //left
dir ="I"
speedControl(dir, spd);
break;

case 's": //backward
if (dir =="'f' || dir =="'s")

stopmotors();

delay(1000);
}
digitalWrite(M1_DIR, LOW); //Current flows from OUTB(-) to OUTA(+)
digitalWrite(M2_DIR, LOW); //Current flows from OUTB(-) to OUTA(+)
dir ='b’;
speedControl(dir, spd);
break;

case 'd": //right
dir="r}
speedControl(dir, spd);
break;

case 'e": //spin clockwise
stopmotors();
digitalWrite(M1_DIR, HIGH);
digitalWrite(M2_DIR, LOW);
dir ='s’;
break;
case 'q': //spin counter-clockwise
stopmotors();
digitalWrite(M1_DIR, LOW);
digitalWrite(M2_DIR, HIGH);
dir ='s"
break;
case r': //Reset Motor Driver Circuits
digitalWrite(M1_RESET, LOW); //Resets Motor 1 (Clears Fault Flags)
digitalWrite(M2_RESET, LOW); //Resets Motor 2 (Clears Fault Flags)
break;
case 'g" //Realeases hold from RESET signal. Must use for initial start up
digitalWrite(M1_RESET, HIGH);
digitalWrite(M2_RESET, HIGH);
break;

161

162

case 'X': //stop(coast)
analogWrite(M1_PWMH, 0); //Turn the motor off by shorting it to GND
analogWrite(M2_PWMH, 0); //Turn the motor off by shorting it to GND
analogWrite(LM_PWM, 0); //Turn the motor off by shorting it to GND
spd = 0;
break;

case 'k': //Linear motor forward
if (Im_dir =="b")

stopmotors();
delay(1000);

}

digitalWrite(LM_DIR, LOW);
Im_dir ='f';
speedControl(dir, spd);

break;
case 'l': //Linear motor backward

if (Im_dir =="'f")
{

stopmotors();

delay(1000);
}
digitalWrite(LM_DIR, HIGH);
Im_dir ="'b";
speedControl(dir, spd);

break;

case '"1"
spd = 25; /110% power
speedControl(dir,spd);
break;

case '2"
spd = 50; 1120% power
speedControl(dir,spd);
break;

case '3"
spd = 75; /130% power
speedControl(dir,spd);
break;

case '4"
spd = 100; 1140% power
speedControl(dir,spd);
break;

case '5"
spd = 125; 1/50% power
speedControl(dir,spd);
break;

case '6"
spd = 150; /160% power

speedControl(dir,spd);

break;

case '7":
spd = 175; 170% power
speedControl(dir,spd);
break;

case '8"
spd = 200; //180% power
speedControl(dir,spd);
break;

case '9"
spd = 225; 1/190% power
speedControl(dir,spd);
break;

case '0":
spd = 255; /1100% power
speedControl(dir,spd);
break;

}
}
}

void speedControl(char dir, int x)

if (dir =="'f" || dir =="b" || dir =="s")
{
analogWrite(M1_PWMH, (x-0.1*x));
analogWrite(M2_PWMH, x);
if (dir == ' && Im_pos !="b")
{
digitalWrite(LM_DIR, HIGH);
analogWrite(LM_PWM, 255);
delay(1600);
analogWrite(LM_PWM, 0);
Im_pos ="'b";

}

else if (dir ='b' && Im_pos !='f")

{
digitalWrite(LM_DIR, LOW);
analogWrite(LM_PWM, 255);
delay(1700);
analogWrite(LM_PWM, 0);
Im_pos ='f;

}

else if (dir ==")
if (spd == 50 || spd == 75 || spd == 100)
{analogWrite(M1_PWMH, (x-0.3*x));

analogWrite(M2_PWMH, x);
}

else if (spd == 125 || spd == 150 || spd == 175) //20% drop in speed in left wheel

{

/110% reduced to counter drift

/130% drop in speed in left wheel

163

164

analogWrite(M1_PWMH, (x-0.2*x));
analogWrite(M2_PWMH, x);

}
else if (spd == 200 || spd == 225 || spd == 255) //10% drop in speed in left wheel
{
analogWrite(M1_PWMH, (x-0.1*x));
analogWrite(M2_PWMH, x);
}

else

analogWrite(M1_PWMH, x/2);
analogWrite(M2_PWMH, x);
}

else if (dir =="r")
if (spd == 50 || spd == 75 || spd == 100) /130% drop in speed in right wheel

analogWrite(M1_PWMH, x);
analogWrite(M2_PWMH, (x-0.3*x));
}
else if (spd == 125 || spd == 150 || spd == 175) //20% drop in speed in right wheel
{
analogWrite(M1_PWMH, x);
analogWrite(M2_PWMH, (x-0.2*x));
}
else if (spd == 200 || spd == 225 || spd == 255) //10% drop in speed in right wheel
{
analogWrite(M1_PWMH, x);
analogWrite(M2_PWMH, (x-0.1*x));
}
else
{
analogWrite(M1_PWMH, x);
analogWrite(M2_PWMH, x/2);
}

}

void stopmotors()

analogWrite(M1_PWMH, 0); //Turn the motor off by shorting it to GND
analogWrite(M2_PWMH, 0); //Turn the motor off by shorting it to GND
analogWrite(LM_PWM, 0); //Turn the motor off by shorting it to GND

}

/*
void doEncoder()

/* If pinA and pinB are both high or both low, it is spinning

* forward. If they're different, it's going backward.

* For more information on speeding up this process, see

* [Reference/PortManipulation], specifically the PIND register.
/ /

165

if (digitalRead(LM_EncA) == digitalRead(LM_EncB)) {
encoderPos++;

}else {
encoderPos--;

}

Serial.printin (encoderPos, DEC);
el

/* Alternate function to show detail in encoder
void doEncoder_Expanded()}
if (digitalRead(encoderOPinA) == HIGH) { // found a low-to-high on channel A
if (digitalRead(encoderOPinB) == LOW) { // check channel B to see which way
/I encoder is turning

encoderOPos = encoderOPos - 1; /I CCW
}
else {
encoderOPos = encoderOPos + 1; /I CW
}
}
else // found a high-to-low on channel A

if (digitalRead(encoderOPinB) == LOW) { // check channel B to see which way
/l encoder is turning

encoderOPos = encoderOPos + 1; /I CW
}
else {
encoderOPos = encoderOPos - 1; /I CCW
}
}
Serial.printin (encoderOPos, DEC); /I debug - remember to comment out

I/ before final program run
/['you don't want serial slowing down your program if not needed

}
¥

166

C.2 Updated Diwheel Program

[[****Senior Capstone Design Diwheel Program 3.0********//
/*

CODE MODIFIED AFTER DIWHEEL FAILURE: PROGRAM HAS NOT BEEN TESTED

Author: Christopher Parisi
Organization: California Baptist University College of Engineering

Baud Rate: 9600 (Arduino Standard)
Use either HyperTerminal or Arduino Serial Monitor for Control

CAUTION! When controlling Diwheel, be sure not to change motor direction instantaneously.
Back EMF can harm the motor drivers and permanently break them.

Descrete Transfer Function For Sensor Feedback:

If the gryo and acceleromter IMU sensor was functional, this transfer function would have been used for
controlling the angle of the chassis.

The transfer function takes in a theta value and provides a distance that the linear weight needs to be
moved.

This number would be used along with the linear motor encoder to control how far the weight is moved at
what time.

Z represents the pitch angle given from the IMU sensor and then give a distance.

This movement will be tied to Arduino's Interrupt and will constantly be moving to compensate for various
accelerations.

(5.519*z2"2-10.95*2 + 543) / (z"3 - 2.573*z"2 + 2.204*z - 0.6278) = distance

Controls for Diwheel
w: forward

: backward

:left

: right

: stop(safety stop-slows down before stopping)
: emergency stop

: start system
reset system

: 10% Speed

: 20% Speed

: 30% Speed

: 40% Speed

: 50% Speed

: 60% Speed

: 70% Speed

: 80% Speed

: 90% Speed

: 100% Speed

O OWOONOUPDPWN-_TQ< XQO0DO®

/lArduino Pin Assignments

const int LM_DIR = 12; /[Direction control for the linear motor

const int LM_PWM = 3; //PWM Signal for speed control of linear motor --CAN | ACTUALL USE THIS
PIN?

const int LM_EncA = 2; /[Linear motor encoder A

const int LM_EncB =

5; /ILinear motor encoder A

const int M1_DIR = 6; /IDirection control for Motor 1

const int M2_DIR = 7; /IDirection control for Motor 2

constint M1_RESET =8; //Reset signal for Motor Driver 1

constint M2_RESET =9; //Reset signal for Motor Driver 2

const int M1_PWMH = 10; /IPWM signal for speed control of Motor 1
const int M2_PWMH = 11; /IPWM signal for speed control of Motor 2

/IOther Variable Assignments
/Ivolatile unsigned int encoderPos = 0;

int command = 0;

int sub_command = 0;

char dir = 'f';

int spd = 0;

int current_spd = 0;
int desired_spd = 0;
char Im_dir ='f};
char Im_pos ='b";

void setup()

/lcode section from from http://playground.arduino.cc/Main/RotaryEncoders#Example1

/[User input from Serial Terminal

/lkeeps track of diwheel direction
/IUpdates speed which is used to control diwheel speed
/lkeeps track of current speed for ramping function
//keeps track of desired speed for ramping function
/Ikeeps track of linear motor direction
I/keeps track of which side the weight is located

pinMode(LM_EncA, INPUT);
digitalWrite(LM_EncA, HIGH); // turn on pullup resistor
pinMode(LM_EncB, INPUT);
digitalWrite(LM_EncB, HIGH); // turn on pullup resistor

/lattachInterrupt(O,

Serial.begin(9600);

doEncoder, CHANGE); // encoder pin on interrupt O - pin 2

/19600 Baud Rate

Serial.printin("Starting Up...");
pinMode(LM_DIR, OUTPUT);
pinMode(LM_PWM, OUTPUT);
/lpinMode(LM_EncA, INPUT);
/lpinMode(LM_EncB, INPUT);

pinMode(M1_DIR,
pinMode(M2_DIR,

OUTPUT);
OUTPUT);

pinMode(M1_RESET, OUTPUT); //defualt HIGH
pinMode(M2_RESET, OUTPUT); //default HIGH
pinMode(M1_PWMH, OUTPUT);
pinMode(M2_PWMH, OUTPUT):;

brakeMotors();

Serial.printin("System Ready.");

}

void loop()

/* Fault Flags removed due to lack of /0O Pins on Arduino

if (FF1Motor1 == LOW && FF2Motor1 == HIGH) || (FF1Motor2 == LOW && FF2Motor2 == HIGH))

//Short Circuit
{

stopmotors();

Serial.printin("Short Circuit Detected. Stopping Diwheel");

//[Command used to update information during ramping function

167

168

}
else if((FF1Motor1 == HIGH && FF2Motor1 == LOW) || (FF1Motor2 == HIGH && FF2Motor2 == LOW))
/IOver Temperature
{
stopmotors();
Serial.printin("Over Temperature. Stopping Diwheel");

}
else if (FF1Motor1 == HIGH && FF2Motor1 == HIGH) || (FF1Motor2 == HIGH && FF2Motor2 ==
HIGH)) //Under Voltage

stopmotors();
Serial.printin("Under Voltage. Stopping Diwheel");

}
¥

if (Serial.available() > 0)

{
command = Serial.read();
switch(command) {

case 'w'": //forward
if (dir =="b" || dir =="'s")

brakeMotors(); //Stop Motors to avoid back EMF

delay(1000);
}
digitalWrite(M1_DIR, HIGH); //Current flows from OUTA(+) to OUTB(-)
digitalWrite(M2_DIR, HIGH); //Current flows from OUTA(+) to OUTB(-)
dir = 'f};
speedControl(dir, spd); //adjust direction while moving
break;

case 'a": //left
dir ="1";
speedControl(dir, spd); //adjust direction while moving
break;

case 's": //backward
if (dir =="'f' || dir =="'s")

brakeMotors(); /[Stop Motors to avoid back EMF
delay(1000);

}

digitalWrite(M1_DIR, LOW); //Current flows from OUTB(-) to OUTA(+)
digitalWrite(M2_DIR, LOW); //Current flows from OUTB(-) to OUTA(+)
dir = 'b";

speedControl(dir, spd); //adjust direction while moving

break;

case 'd": //right
dir="r}
speedControl(dir, spd);
break;

case 'e": //spin clockwise
brakeMotors();

169

delay(1000);
digitalWrite(M1_DIR, HIGH);
digitalWrite(M2_DIR, LOW);
dir ='s";
break;

case 'q': //spin counter-clockwise
brakeMotors();
delay(1000);
digitalWrite(M1_DIR, LOW);
digitalWrite(M2_DIR, HIGH);
dir ='s";
break;

case r': //Reset Motor Driver Circuits
digitalWrite(M1_RESET, LOW); //Resets Motor 1 (Clears Fault Flags)
digitalWrite(M2_RESET, LOW); //Resets Motor 2 (Clears Fault Flags)
break;

case 'g" //Realeases hold from RESET signal. Must use for initial start up
digitalWrite(M1_RESET, HIGH);
digitalWrite(M2_RESET, HIGH);
break;

case 'X': //stop(coast)
slowMotors();
break;

case 'v": //lemergency stop (break)
brakeMotors();
break;

case 'k': //Linear motor forward (USE ONLY FOR TESTING!)
if (Im_dir =="b")

brakeMotors();
delay(1000);
}
digitalWrite(LM_DIR, LOW);
Im_dir ='f';
speedControl(dir, spd);
break;

case 'I': //Linear motor backward (USE ONLY FOR TESTING!)

if (Im_dir =="'f")
brakeMotors();
delay(1000);

}

digitalWrite(LM_DIR, HIGH);

Im_dir ="'b";

speedControl(dir, spd);

break;

case '1":
spd = 25; /110% power

desired_spd = 1;
speedRamp();

}
}
}

break;

case '2"
spd = 50; 1120% power
desired_spd = 2;
speedRamp();
break;

case '3"
spd = 75; /130% power
desired_spd = 3;
speedRamp();
break;

case '4"
spd = 100; 1140% power
desired_spd = 4;
speedRamp();
break;

case '5"
spd = 125; /150% power
desired_spd = 5;
speedRamp();
break;

case '6"
spd = 150; /160% power
desired_spd = 6;
speedRamp();
break;

case '7"
spd = 175; 170% power
desired_spd = 7;
speedRamp();
break;

case '8"
spd = 200; //180% power
desired_spd = 8§;
speedRamp();
break;

case '9"
spd = 225; /190% power
desired_spd = 9;
speedRamp();
break;

case '0":
spd = 255; /1100% power
desired_spd = 0;
speedRamp();
break;

void speedRamp()

{

if (desired_spd > current_spd)

{
{

while ((current_spd != desired_spd) && (Serial.read() != 'x') && (Serial.read() != 'v'))

170

sub_command = Serial.read(); //check if a new command has been updated
if (sub_command =="")
{

dir = T

else if (sub_command =="'r")
{
dir="r"
}
current_spd++; /Iramp of speed 10% at a time
spd = current_spd*25; //Pass PWM number corresponding to speed
speedControl(dir, spd); //Update speed and direction
delay(500); //Wait 1/2 a second until ramping up again

}
if (Serial.read() =="v")
{

brakeMotors();

else if (Serial.read() == 'x")
{
slowMotors();
}
}
else if (desired_spd < current_spd)
{
while ((current_spd != desired_spd) && (Serial.read() != 'x') && (Serial.read() != 'v'))
{
sub_command = Serial.read();
if (sub_command =="")
{

dir ="

else if (sub_command =="'r")
{

dir="r}
}
current_spd--;
spd = current_spd*25;
speedControl(dir, spd);
delay(500);

}
if (Serial.read() =="'v")
{

brakeMotors();
else if (Serial.read() == 'X')

slowMotors();

}
}

else
speedControl(dir, spd);
}

void speedControl(char dir, int x)

{

172

if (dir =="'f" || dir =="b" || dir =="s")
{
analogWrite(M1_PWMH, (x-0.1*x)); /110% reduced to counter drift
analogWrite(M2_PWMH, x);
if (dir =='f' && Im_pos !="b")
{
digitalWrite(LM_DIR, HIGH);
analogWrite(LM_PWM, 255);
delay(1000);
analogWrite(LM_PWM, 0);
Im_pos ="'b";

}
else if (dir = 'b' && Im_pos !='f")
{
digitalWrite(LM_DIR, LOW);
analogWrite(LM_PWM, 255);
delay(1600);
analogWrite(LM_PWM, 0);
Im_pos ='f}
}
}
else if (dir ==")

{
if (spd == 50 || spd == 75 || spd == 100) /130% drop in speed in left wheel
{

analogWrite(M1_PWMH, (x-0.3*x));

analogWrite(M2_PWMH, x);
}
else if (spd == 125 || spd == 150 || spd == 175) //20% drop in speed in left wheel
{

analogWrite(M1_PWMH, (x-0.2*x));

analogWrite(M2_PWMH, x);

}
else if (spd == 200 || spd == 225 || spd == 255) //10% drop in speed in left wheel
{
analogWrite(M1_PWMH, (x-0.1*x));
analogWrite(M2_PWMH, x);
}

else

{
analogWrite(M1_PWMH, x/2);
analogWrite(M2_PWMH, x);

}

else if (dir =="r")
if (spd == 50 || spd == 75 || spd == 100) /130% drop in speed in right wheel
{

analogWrite(M1_PWMH, x);
analogWrite(M2_PWMH, (x-0.3*x));

}
else if (spd == 125 || spd == 150 || spd == 175) //20% drop in speed in right wheel
analogWrite(M1_PWMH, x);

analogWrite(M2_PWMH, (x-0.2*x));
}

173

else if (spd == 200 || spd == 225 || spd == 255) //10% drop in speed in right wheel
{

analogWrite(M1_PWMH, x);

analogWrite(M2_PWMH, (x-0.1*x));
}

else

analogWrite(M1_PWMH, x);
analogWrite(M2_PWMH, x/2);

}
}
}
void brakeMotors()
{

analogWrite(M1_PWMH, 0); //Turn the motor off by shorting it to GND
analogWrite(M2_PWMH, 0); //Turn the motor off by shorting it to GND
analogWrite(LM_PWM, 0); //Turn the motor off by shorting it to GND
desired_spd = 0;

current_spd = 0;

spd = 0;
}
void slowMotors()
{

desired_spd = 0;

while (current_spd != desired_spd)

{
current_spd--;
spd = current_spd*25;
speedControl(dir, spd);
delay(300);

}
analogWrite(M1_PWMH, 0); //Turn the motor off by shorting it to GND
analogWrite(M2_PWMH, 0); //Turn the motor off by shorting it to GND
analogWrite(LM_PWM, 0); //Turn the motor off by shorting it to GND
spd = 0;
current_spd = 0;

}

/*
void doEncoder()

/* If pinA and pinB are both high or both low, it is spinning

* forward. If they're different, it's going backward.

* For more information on speeding up this process, see

* [Reference/PortManipulation], specifically the PIND register.

/ /

if (digitalRead(LM_EncA) == digitalRead(LM_EncB)) {
encoderPos++;

}else {

encoderPos--;

}

174

Serial.printin (encoderPos, DEC);
el

/* Alternate function to show detail in encoder
void doEncoder_Expanded()}
if (digitalRead(encoderOPinA) == HIGH) { // found a low-to-high on channel A
if (digitalRead(encoderOPinB) == LOW) { // check channel B to see which way
/I encoder is turning

encoderOPos = encoderOPos - 1; /I CCW
}
else {
encoderOPos = encoder0Pos + 1; /I CW
}
}
else // found a high-to-low on channel A

if (digitalRead(encoderOPinB) == LOW) { // check channel B to see which way
/l encoder is turning

encoderOPos = encoderOPos + 1; /I CW
}
else {
encoderOPos = encoderOPos - 1; /I CCW
}
}
Serial.printin (encoderOPos, DEC); /I debug - remember to comment out

I/ before final program run
/['you don't want serial slowing down your program if not needed

}
¥

175

D. Appendix D: MatLab Controls Derivations

D.1 Dynamics Derivations
The following MatLab code was used to make the transfer functions used in creating the
controller from the dynamic equations.

$Diwheel derivation 1
syms theta phi 1 T F s Mo Mw m e Jb R r Jw g

Mb=30; $Mass of body

Mw=2; $Mass of Wheels

m=1; $Mass of sliding weight
e=.136; $Center of mass pendulum length
Jb=7.5; $moment of inertia of body
R=.310; $Wheel Radius

r=0.122; $sliding weight pendulum length
Jw=2.5; $moment of inertia of wheels
g=9.81; $gravity

El=(Jbt+Mb*e”2+m* (r"2)) *theta*s"2-Mb*g*e*theta+m*g* (lL-r*theta) -
(Mb*R*e+m*R*r) *phi*s*2+T+m*r*1*s"2;

E2=(Mw*R"2+Jw-Mb* (R-e) *R-m* (R-r) *R) *phi*s”*2+ (Jb+Mb* (R-e) *R+m* (R-
r) *R) *theta*s"2-Mb*g*e*theta+m*g* (l-r*theta) -m* (R-r) *1*s"2;
E3=-F+m*g*theta+tm* (-r*theta*s*2+R*phi*s"2+1*s"2) ;

phi sol=solve (El,phi);

E2s=subs (E2, phi,phi sol);

E2s=simplify(E2s) ;

E2s=collect (E2s, theta);

E2s theta=subs (E2s,T,0)

E2s theta=subs (E2s theta,1,0)

E2s theta=collect (E2s theta, s)

E2s theta=collect (E2s_ theta, theta)
E2s l=subs(E2s,T,0)

E2s l=subs (E2s_1,theta,0)

E2s l=collect (E2s_1,s)

E2s l=collect (E2s_1,1)

]
~
=
~
o

E2s T=subs (E2
E2s T=subs (E2s_T, theta,0)
E2s T=collect (E2s_T, s)
E2s T=collect (E2s_T,T)

E2s theta
pretty(E2s theta)
E2s 1
pretty(E2s 1)
E2s T
pretty(E2s T)

176

%$Diwheel Derivation 2
syms theta phi 1 T F s Mo Mw m ¢ Jb R r Jw g

Mb=30; $Mass of body

Mw=2; $Mass of Wheels

m=1; $Mass of sliding weight
e=.136; $Center of mass pendulum length
Jb=7.5; $moment of inertia of body
R=.310; $Wheel Radius

r=0.122; $sliding weight pendulum length
Jw=2.5; $moment of inertia of wheels
g=9.81; $gravity

El=(Jbt+Mb*e”2+m* (r"2)) *theta*s"2-Mb*g*e*theta+m*g* (lL-r*theta) -
(Mb*R*e+m*R*r) *phi*s*2+T+m*r*1*s"2;

E2=(Mw*R"2+Jw-Mb* (R-e) *R-m* (R-r) *R) *phi*s”*2+ (Jb+Mb* (R-e) *R+m* (R-
r) *R) *theta*s”2-Mb*g*e*thetat+m*g* (1-r*theta)-m* (R-r) *1*s"2;
E3=-F+m*g*theta+tm* (-r*theta*s*2+R*phi*s"2+1*s"2);

1 sol=solve(E3,1)
Els=subs (E1l,1,1 sol)
E2s=subs (E2,1,1 sol)

phi sol=solve (Els,phi);

E2s=subs (E2s,phi,phi sol);
E2s=simplify (E2s) ;
E2s=collect (E2s,phi)

E2s theta=subs (E2s,T,0);

E2s theta=subs (E2s_ theta,F,0);

E2s theta=collect (E2s_theta,s);

E2s theta=collect (E2s_theta, theta);

E2s T=subs (E2s, theta,0);
E2s T=subs(E2s T,F,0);

E2s T=collect(E2s T,s);
E2s T=collect (E2s T,T);

E2s F=subs(E2s,T,0);

E2s F=subs (E2s_F, theta,0);
E2s F=collect(E2s F,s);
E2s F=collect (E2s F,F);

E2s theta

pretty (E2s theta)
E2s T

pretty(E2s T)
E2s F

pretty (E2s _F)

D.2 Sliding Weight Position Controller

Theta Controller =
0.2304 s"2 +0.38s+ 1

0.000333 s"3 +0.0155 "2+ 0.223 s + 1

DiWheel Model =

-0.006003 s"*2 +1.129

"2 +1.764 s +4.742

Controlled Diwheel Model =

-0.001383 5”4 - 0.002281 s*3 +0.254 s"2 + 0.4289 s + 1.129

0.000333 575+ 0.0147 s74 + 0.2496 s"3 + 1.721 s"2 + 3.25 s + 5.871

Root Locus Editor for Open Loop 1(OL1)

40 T

Open-Loop Bode Editor for Open Loop 1(OL1)

-40 '

| T
[

T

-40
360

270 +

90

G.M.:7.81dB
c | Freq: 25.8 rad/s
Stable loop

P.M.: inf

Freg: NaN

-100 -50

0 50

Real Axis

100

150

-

10" 10° 10’ 10 10°

Frequency (rad/s)

177

