

EGR 322 Microcontroller System Design

Lab 6 – Digital Clock Using PSoC Timer
and LCD Tool Box

Prepared for: Dr. Foist

Christopher Parisi

College of Engineering
California Baptist University

03/21/12

Summary

This lab teaches students how to use the LED on the PSoC Evall board. Students will
learn how to use the LCD User Module to create programs that show strings and integers
on the screen. Students will also implement previous lab material by using the Timer to
create a clock.

Design

Exercise 1:
I began by creating a project and writing the main program to display a string and an
integer. I accomplished this by using the example code given and modifying it meet my
needs. The program I wrote is shown below. The Program was built, downloaded, and
testing. It worked correctly and was approved by the professor.

;--
; Assembly main line
;--

include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

export _main

area bss(RAM)

 hour: BLK 1

 min: BLK 1

area text(ROM, REL)

_main:

 mov [hour], 7
 mov [min], 14

 cmp [min], 9
 jz resume
 add [min], 6

resume:
 lcall LCD_1_Start

 mov A, 0
 mov X, 4
 lcall LCD_1_Position

 mov A, >sRomString1
 mov X, <sRomString1

 lcall LCD_1_PrCString

 mov A, 1
 mov X, 4

 lcall LCD_1_Position
 mov A, [hour]
 mov X, 0

 lcall LCD_1_PrHexByte

 mov A, 1
 mov X, 6
 lcall LCD_1_Position

 mov A, >sRomString2
 mov X, <sRomString2
 lcall LCD_1_PrCString

 mov A, 1
 mov X, 7
 lcall LCD_1_Position

 mov A, [min]
 mov X, 0
 lcall LCD_1_PrHexByte

area lit

sRomString1:
DS "My Clock"
db 00h

sRomString2:
DS ":"
db 00h

Exercise 2:
I then wrote a program that generates an interrupt every 1 second. I used the timer
module rather than the PSoC Sleep Timer. I used the 16-bit Timer Module. My code is
shown below.

;--
-
; Assembly main line
;--
-

include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

export _main

area text(ROM, REL)

_main:

 mov REG [INT_MSK1], 0x02
 M8C_EnableGInt
 lcall Timer16_1_EnableInt
 lcall Timer16_1_Start
 mov REG[PRT1DR], 0

 loop: jmp loop

Exercise 3:
I then wrote code that implements a digital clock on the LCD by combining my excerice
1 and 2. I used the interrupt signal to change the seconds value every one second and
display it on the screen. For the systems settings, I chose VC1=10, VC2=10 and VC3
divided by 30 to obtain a 1kHz signal.

;--
; Assembly main line
;--
include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

export _main

area bss(RAM)
 hour: BLK 1
 min: BLK 1

area text(ROM, REL)

_main:

 mov REG[INT_MSK1], 0x02
 M8C_EnableGInt
 lcall Timer16_1_EnableInt
 lcall Timer16_1_Start
 mov REG[PRT1DR], 0

loop:
 lcall LCD_1_Start

 mov A, 0
 mov X, 4
 lcall LCD_1_Position

 mov A, >sRomString1
 mov X, <sRomString1
 lcall LCD_1_PrCString

 mov A, 1
 mov X, 4
 lcall LCD_1_Position

 mov A, [hour]
 mov X, 0

 lcall LCD_1_PrHexByte

 mov A, 1
 mov X, 6
 lcall LCD_1_Position

 mov A, >sRomString2
 mov X, <sRomString2

 lcall LCD_1_PrCString

 mov A, 1
 mov X, 7
 lcall LCD_1_Position

 mov A, [min]
 mov X, 0
 lcall LCD_1_PrHexByte

 jmp loop

area lit

sRomString1:
DS "My Clock"
db 00h
sRomString2:
DS ":"
db 00h

;-------------------------------
; SleepTimer ISR
;-------------------------------
include "m8c.inc"
export SleepTimerISR

SleepTimerISR:

 inc [min]
 mov A, [min]
 and A, 0x0F
 cmp A, 10
 jz addmin
 jmp compare

addmin:
 add [min], 6

compare:
 cmp [min], 0x60
 jz minutes
 reti

hours:
 mov [min], 0
 inc [hour]
 mov A, [hour]
 and A, 0x0F
 cmp A, 10
 jz addhour
 reti

addhour:
 add [hour], 6
 reti

Discussion

I did not encounter any technical issues with this lab but I did have a hard time figuring
out the code for exercise 2 and 3. After working on it for a while, I was able to solve the
problem.

Conclusion

This lab has taught me how to use the LCD User Module and how to use it to display various
data on the screen. I have also learned how to use the interrupt timer in my projects to create a
clock. Knowing how to program an LCD is a useful tool and this lab has given me the
knowledge to do so.

