EGR 400 A
Advanced Digital
System Design Using FPGAs

Lab 3: Enhanced Stopwatch Design

Prepared for: Dr. Foist

Christopher Parisi

College of Engineering
California Baptist University

10/19/12



Introduction

The objective for this lab was to design, synthesize, and verify a stopwatch
that can count both forwards and backwards. The counter tells the time past in the
form of M.SS.D using the seven-segment display attachment to the Xilinx board. The
timer can be reset by pressing a button on the board. The forward and backward
counting functions are also utilized by a push button. The purpose of the lab was to
teach students how to program a stop watch and how to implement the logic of a
modulo counter for accurate time measurement . This lab also teaches students
more about the ISE IDE, Spartan 3E-Starter board, and Xilinx Design Flow.

Procedure
Dr. Chu’s Stopwatch

Before starting the lab 3 assignment, [ began by downloading Dr. Chu’s
stopwatch code. [ downloaded the code onto the Spartan 3E-Starter board and
observed the design. I found that the West button started the timer, and the South
button reset the timer. One thing that was slightly off about this design was a
denouncing issue. The button occasionally needed to be pressed multiple times to
actually start the timer. Another design problem was the “go” button had to be held
to keep the stopwatch running.

Dr. Foist’s Stopwatch

After observing Dr. Chu’s code, I downloaded Dr. Foist’s stopwatch files and
downloaded the design to the Spartan-3E Starter board. I observed the functionality
of this stopwatch and found that the “go” button no longer needed to be held to
continuously run the timer. This design also contained a debouncing glitch which
cause the button to not work at times.

After testing the design, | was instructed to create a testbench for the State
Machine utilized by Dr. Foist’s design. This testbench tested the design for each state
and displayed this information on the waveform. I had to learn how to view the
“state_reg” variable in my waveform even though it was not part of the top level
design. After working in ISE for some time, I learned how to do this and dragged the
signal into my waveform. The Verilog code for my test fixture can be found in
Appendix A along with the simulation results in Figure 2.



Lab Assignment

The lab assignment was to improve these designs by adding two
modifications. Both previous designs had stopwatches that counted to 9.99.9. This
does not count minutes, but continuously increase numbers as the seconds go on.
Part of the lab assignment was fixing this issue so the stopwatch kept tract of
minutes as well. The second modification involved adding another signal to control
the direction the stopwatch counted.

Step 1
“Add an additional signal, up, to control the direction of counting. The stopwatch
counts up when the up signal is asserted and counts down otherwise.”

Working of Dr. Foist’s design, I added a new signal named “up” to his design
and assigned it to another push button. When this signal goes high (button is pushed
and held), the timer revers directions and starts counting down to 0.00.0.
downloaded this modified design to the board and tested it. When the button was
pressed, the circuit counted backwards as required. This still counted only seconds
and not minutes.

Step 2
"Add a minute digit to the display. The LED display format should be like M.SS.D, where
D represents 0.1 second and its range is between 0 and 9, SS represents seconds and its

range is between 00 and 59, and M represents minutes and its range is between 0 and
9. ”

After I tested the multi-direction stopwatch, I then began editing the logic to
incorporate minutes into the design. This was changed by making the max value of
seconds to be 59. When the program hits 59 seconds, the seconds reset to 00 and
the minute digit is incremented by 1. I downloaded this final design to the Spartan-
3E Starter board and verified its functionality. The timer went to X.59.99 and then
incremented the minute and reset the rest to 0. This also worked for when the
circuit counted down. The top-level Verilog module code can be found in Appendix
B, the stopwatch module Verilog code can be found in Appendix C, and the UCF can
be found in Appendix D. A summary of the Device Utilization can be found on Figure
1 of the next page.



Device Utilization Summary

Logic Utilization

Used

Available

Utilization

Note(s)

Mumber of Slice Flip Flops

59

9,312

1%

Mumber of 4 input LUTs

78

9,312

1%

Mumber of occupied Slices

63

4,656

1%

Mumber of Slices containing only related logic

63

63

100%

Mumber of Slices containing unrelated logic

0

63

0%

Total Number of 4 input LUTs

117

9,312

1%

Mumber used as logic

78

Mumber used as a route-thru

39

Mumber of bonded I0Bs

22

232

9%

Mumber of BUFGMUXs

1

24

4%

Average Fanout of Non-Clock Nets

3.1z

Figure 1: Enhanced Stopwatch Device Utilization Summary

Conclusion

In summary, this lab has taught me the functionality and implementation of a
multidirectional stopwatch. This lab has also given me more experience “thinking
hardware” as I write Verilog code. Everything during this lab worked correctly and
there were no major hindrances. I learned how to read and modify Verilog code
written by another programmer as well as thinking about the logic of a modulo
counter needed to implement time tracking functions. I also learned how to bring in
signals from lower levels of the code into top level design testbench waveforms.




Appendix A

State Machine Verilog Test Fixture
“timescale 1ns / 1ps

module state_mc_swatch_tb;

localparam T=20;

// Inputs
reg clk;
reg reset;

reg go,

// Outputs
wire cnt_ena;
wire cntr_clr;

// Instantiate the Unit Under Test (UUT)
state_mc_swatch uut (
.clk(clk),
reset(reset),
.go(go),
.cnt_ena(cnt_ena),
.cntr_clr(cntr_clr)

always

begin
clk=1'b1;
#(T/2);
clk =1'b0;
#(T/2);

end

initial begin
// Initialize Inputs
reset = 0;
go=0;

// Wait 100 ns for global reset to finish
#100;



// Test Vector 1
reset=0;
go=1;

#200;

// Test Vector 2
reset=1;
go=1;

#100;

// Test Vector 3
reset=0;
go=1;

#200;

end

endmodule

p Mg state_req[1:0]

Figure 2: State Machine Verilog Test Fixture Simulation Results



Appendix B
Enhanced Stopwatch Top-Level Verilog Module

module s3e_stopwatch_sm_test
(
input wire clk,
input wire [1:0] btn,
input wire up,
output wire an_lo,
output wire an_hi,
output wire [6:0] sseg_lo,
output wire [6:0] sseg_hi,
output wire [1:0] led
);

// signal declaration
wire [3:0] d3,d2, d1, dO;
wire cnt_ena, cntr_clr;

disp_hex_mux_s3e disp_unit_lo
(.clk(clk), .reset(1'b0), .hex0(d1), .hex1(d0),
.an(an_lo), .sseg(sseg_lo));

disp_hex_mux_s3e disp_unit_hi
(-clk(clk), .reset(1'b0), .hex0(d3), .hex1(d2),
.an(an_hi), .sseg(sseg_hi));

// instantiate stopwatch

stop_watch_if counter_unit

// (.clk(clk), .go(btn[1]), .up(BTN[East], .clr(btn[0]),
(.clk(clk), .go(cnt_ena), .up(up), .clr(cntr_clr),

.d3(d3),.d2(d2), .d1(d1),.d0o(d0),
.ms_reg_b22(led[1]), .ms_reg b21(led[0]) // added by Rod

);

// instantiate state machine to handle "go" input
state_mc_swatch sm1(
.clk(clk),
.reset(btn[0]),
go(btn[1]),
.cnt_ena(cnt_ena),
.cntr_clr(cntr_clr)

endmodule



Appendix C
stop_watch_if module Verilog Code

// Listing 4.18
module stop_watch_if
(
input wire clk,
input wire go, clr, up,
output wire [3:0] d3, d2, d1, dO,
// added by Rod
output wire ms_reg b22, ms_reg b21

)

// declaration

localparam DVSR =5000000;

reg [22:0] ms_reg;

wire [22:0] ms_next;

reg [3:0] d3_reg, d2_reg, d1_reg, d0_reg;

reg [3:0] d3_next, d2_next, d1_next, d0_next;
wire ms_tick;

// body
// register
always @(posedge clk)
begin
ms_reg <= ms_next;
d3_reg <= d3_next;
d2_reg <= d2_next;
d1_reg <= d1_next;
d0_reg <= d0_next;
end

// next-state logic
// 0.1 sec tick generator: mod-5000000
assign ms_next = (clr || (ms_reg==DVSR && go)) ? 4'b0 :(go) ? ms_reg + 1 : ms_reg;
assign ms_tick = (ms_reg==DVSR) ? 1'b1: 1'b0;
// 3-digit bcd counter
always @*
begin
// default: keep the previous value
dO0_next = d0_reg;
d1_next =d1_reg;
d2_next = d2_reg;
d3_next = d3_reg;
if (clr)
begin
d0_next =4'b0; //decimal
d1_next =4'b0; //seconds1
d2_next =4'b0; //seconds2
d3_next =4'b0; //minutes
end
else if (ms_tick)
if ('up) //count up

if (d0_reg!=9)
d0_next=d0_reg + 1;
else // reach XXX.9



begin
d0_next =4'b0;
if (d1_reg!=9)
d1l_next=dl_reg+1;
else //reach XX9.9
begin
d1_next=4'b0;
if (d2_reg!=5)
d2_next=d2_reg+1;
else // reach X59.9
begin
d2_next =4'b0;
if (d3_reg!=9)
d3_next=d3_reg+1;
else // reach 959.9
d3_next=4'b0;
end
end
end
else //count down
if (d0_reg!=0)
d0_next=d0_reg- 1;
else // reach 0XX.X
begin
d0_next=4'b1001;
if (d1_reg!=0)
d1l_next=dl_reg-1;
else //reach 00XX

begin
d1_next=4'b1001;
if (d2_reg!=0)
d2_next=d2_reg-1;
else // reach 000.X
begin
d2_next=4'b0101;
if (d3_reg!=0)
d3_next=d3_reg-1;
else // reach 000.0
d3_next=4'b1001;
end
end

end
end

// output logic
assign d0 = d0_reg;
assign d1 = d1_reg;
assign d2 = d2_reg;
assign d3 = d3_reg;
// added by Rod
assign ms_reg_b22 = ms_reg[22];
assign ms_reg_b21 = ms_reg[21];

endmodule



Appendix D

Enhanced Stop Watch UCF (User Constraints File)

# Pin assignment for Xilinx
# Spartan-3E Starter board

# Period constraint for 50MHz operation, from Ken C.
I#\#IET "clk" PERIOD = 20.0ns HIGH 50%;

z soldered 50MHz Clock.

I#\#IET "clk" LOC ="C9" | IOSTANDARD = LVTTL;

# 4 pushbuttons

#NET "BTN_EAST" LOC ="H13" | IOSTANDARD = LVTTL | PULLDOWN ;

#NET "BTN_NORTH" LOC = "V4" | IOSTANDARD = LVTTL | PULLDOWN ;

NET "btn<0>" LOC ="K17" | IOSTANDARD = LVTTL | PULLDOWN ; # "BTN_SOUTH"
NET "btn<1>"LOC ="D18" | [OSTANDARD = LVTTL | PULLDOWN ; # "BTN_WEST"
NET "up" LOC = "H13" | IOSTANDARD = LVTTL | PULLDOWN ; # "BTN_EAST"

# 4 slide switches

#NET "sw<0>" LOC = "L13" | IOSTANDARD = LVTTL | PULLUP;
#NET "sw<1>" LOC = "L14" | IOSTANDARD = LVTTL | PULLUP;
#NET "sw<2>" LOC = "H18" | IOSTANDARD = LVTTL | PULLUP;
#NET "sw<3>"LOC="N17" | IOSTANDARD = LVTTL | PULLUP;

H oo Leds for debug -----------------

#NET "LED<7>" LOC = "F9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;

#NET "LED<6>" LOC = "E9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

#NET "LED<5>" LOC="D11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;;

#NET "LED<4>" LOC="C11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;

#NET "LED<3>" LOC="F11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;

NET "led<1>" LOC = "F11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ; # led1,0 for debug

#NET "LED<2>"LOC="E11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;
#NET "LED<1>" LOC ="E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;
NET "led<0>"LOC ="E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;

#NET "LED<0>" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;

NET "sseg_lo<6>" LOC = "A4" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segmenta



NET "sseg_lo<5>" LOC = "C5" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segmentb
NET "sseg lo<4>" LOC = "B6" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segment c
NET "sseg_lo<3>" LOC = "F7" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segmentd
NET "sseg lo<2>" LOC = "C7" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segment e

NET "sseg lo<1>" LOC = "E8" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segment f

NET "sseg_lo<0>" LOC = "E9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segment g

NET "an_lo" LOC = "C11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# 2-digits enable

NET "sseg_hi<6>" LOC = "E11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# segment a
NET "sseg_hi<5>" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# segmentb
NET "sseg_hi<4>" LOC = "B13" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# segment c
NET "sseg_hi<3>" LOC = "B14" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# segmentd
NET "sseg_hi<2>" LOC = "D14" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# segment e
NET "sseg_hi<1>" LOC = "B16" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# segment f
NET "sseg_hi<0>" LOC = "C4" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segment g
NET "an_hi" LOC = "A11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# 2-digits enable

10



