EGR 400 A
Advanced Digital
System Design Using FPGAs

Lab 4: Alternative Debouncing Circuit

Prepared for: Dr. Foist

Christopher Parisi

College of Engineering
California Baptist University

11/02/12

Introduction

The objective for this lab was to design, synthesize, and verify a debouncing
circuit. In the textbook, Dr. Chu presents a debouncing circuit which uses a state
machine. This lab instructs students on how to create an alternative to Dr. Chu'’s
debouncing design. This design uses a state machine and a counter in order to solve
the debouncing problem.

Procedure
Design and Simulation

Step 1: State Diagram and Block Diagram

A partially-completed state diagram and a block diagram were given and I
was tasked with completing the state diagram. Using my understanding of how a
debouncing circuit works, I filled in the missing parts of the state diagram. My state
diagram and block diagram are shown below.

Figure 1.1: State Diagram

Figure 1.2: Block Diagram

Part 2: Determining N Value for the Counter

This debounce design utilizes a 30-40msec counter. In order to implement
this counter, I had to determine the number of bits needed to simulate this amount
of time using a counter. Given that the S3E board provides a 50 MHz clock, I
performed the following calculations to determine the number of bits [would
require for my counter.

f=50MHz
= l = ; =20nsec
f S50MHz
Tx =30msec
= 30msec _15M
20nsec

2" =30msec
In order to reach a count of at least 1.5 million, the value of N must be 21.
This value actually allows for about 2 million so the counter is somewhere above

30msec.

Part 3: Designing and Testing the Finite State Machine

Using the state diagram in Figure 1.1 as a guide, I wrote the Verilog code for
the state machine. This state machine has four states which represents the status of
the push button. State “wait_1" waits for the first rising edge of the bush button
signal. When it encounters the rising edge, the debounced signal is set high, the
circuit moves to the second state “filt_1” and the timer is started. Once the timer
finishes counting (roughly 30msec have passed), the circuit moves to the “wait_0"
sate and waits for the push button signal to go low (off). Once the push button signal
goes low, the circuit moves to the fourth state in which the timer is again enabled
and counts for about 30msec. Once the counter is finished, the debounced signal is
set low, and the circuit returns to the initial state. The code for this state machine
can be found in Appendix A.

After writing the state machine, I tested my design using a Verilog Test
Fixture. The simulation corresponded correctly with the state diagram and
confirmed my design. The simulation waveform clearly shows the circuit move from
each state with the correct input values. The code for this test bench as well as the
simulation results can be in Appendix A.

Part 4: Designing the Counter

[then proceeded to design my counter using the previously calculated N
value. I designed an up counter which outputs a signal when the highest value is
reached. The code for this counter can be found in Appendix B.

Part 5: Designing and Testing the Top Design

After designing the necessary modules, I wrote a top level module named
“dbounce_fast.v” and connected the modules together according to the block
diagram in Figure 1.2. This code for this top design can be found in Appendix C.

[then tested my design with a Verilog Test Fixture and the simulation results
confirmed my design. | simulated a switch debounce by making the switch signal
switch between high and low for a period of time. The simulation waveform shows
how the debounce was ignored because of the time delay created by the counter.
The results of my simulation and module code can be found in Appendix C.

FPGA Implementation

After completing the steps for designing a debounce circuit, | downloaded Dr.
Chu’s debounce circuit project and tested it on the S3E board. When pressing the
button, the debounced 7-seg-display counted regularly whereas the non-debounced
7-seg-display counted sporadically. This shows that his deboucning design was
correct.

[then replaced his debouncing circuit with mine and tested it on the S3E
board. My design functioned the same and the debounce error was fixed. The code
for the top level FPGA implementation can be found in Appendix D. The User
Constraints File used for this FPGA implementation can be found in Appendix E. The
resources used in this design are shown in Figure 6.1.

Figure 6.1: Chip Resources Summary

Device Utilization Summary

Logic Utilization Used Available Utilization
Mumber of Slice Flip Flops 60 9,312 1%
Mumber of 4 input LUTs 56 9,312 1%
Mumber of occupied Slices 49 4,656 1%
Mumber of Slices containing only related logic 49 49 100%
Mumber of Slices containing unrelated logic 0 49 0%
Total Number of 4 input LUTs 38 9,312 1%
Mumber used as logic 56
MNumber used as a route-thru 32
Mumber of bonded IOBs 20 232 8%
Number of BUFGMUXs 1 24 4%
Average Fanout of Non-Clock MNets 2.89
Conclusion

This lab went through the steps of designing, simulation, and implementing a
debouncing circuit. A finite state machine and a counter were used to create this
debouncing circuit. The state machine corresponded to the sections of the push
button signal, and the counter was used to simulate a delay of about 30msec.

Everything in this lab worked correctly and a debounced counter was clearly
observed in the FPGA implementation. I learned how to design and test an alternate
debouncing circuit. I learned more about creating counters to simulate a time delay
and how to use this module in a top level design.

Appendix A

FSM Verilog Code
module fsm
(
input clk, reset, sw, m_tick,
output sw_db, en_timer
);

//symbolic state declerations
localparam [1:0] wait_1 = 2'b00,

filt. 1 =2'b01,
wait_0 =2'b10,
filt 0 = 2'b11;

//signal declerations
reg [1:0] state_reg, state_next;

//state register
always @(posedge clk)
if (reset)
state_reg <= wait_1;
else
state_reg <= state_next;

//next-state logic
always @*
case (state_reg)
wait_1: if(sw)
state_next = filt_1;
else
state_next = state_reg;
filt_1: if(m_tick)
state_next = wait_0;
else
state_next = state_reg;
wait_0: if(Isw)
state_next = filt_0;
else
state_next = state_reg;
filt_0: if(m_tick)
state_next = wait_1;
else
state_next = state_reg;
default: state_next = wait_1;
endcase

//Output
assign sw_db = (state_reg == filt_1 || state_reg == wait_0);

assign en_timer = (state_reg == filt_1 || state_reg == filt_0);

endmodule

FSM Verilog Test Fixture Code

“timescale 1ns / 1ps

module fsm_tb;

// Reset Circuit

// Inputs reset =1;
reg clk; sw = 0;
reg reset; m_tick = 0;
reg sw; #200;
reg m_tick;
// Activate State filt_1
// Outputs reset = 0;
wire sw_db; sw=1;
wire en_timer; m_tick = 0;
#200;

// Instantiate the

// Unit Under Test (UUT) // Activate State wait_0
fsm uut (reset = 0;

.clk(clk), sw=1;

reset(reset), m_tick = 1;

Sw(sw), #200;

.m_tick(m_tick),
.sw_db(sw_db),
.en_timer(en_timer)

//Activate State filt_0
reset = 0;

); sw =0;
m_tick = 0;
//40ns clock #200;

always #15 clk = Iclk;

initial begin

//Loop back to State wait_1
reset = 0;

// Initialize Inputs sw=0;

clk =0; m_tick = 1;
reset =0; #200;

sw = 0;

m_tick = 0; end

// Wait 100 ns endmodule

#100;

FSM Verilog Test Fixture Waveform

Appendix B
Counter Verilog Code

module counter
#(parameter N=21)
(
input clk, reset, en,
output m_tick

);

//Signal Decleration
reg [N-1:0] count;

//body
always @(posedge clk, posedge reset)
if (reset)
count <= 0;
else if (en)
count <= count + 1;
else
count <= 0;

assign m_tick = (count==2**N-1) ? 1'b1 : 1'b0;

endmodule

Appendix C
Top Design Verilog Code

module dbounce_fast

(

input sw, clk, reset,
output sw_db

wire en_timer, m_tick;

//Instatiate Modules
//Finite State Machine
fsm ul
(.sw(sw), .clk(clk), .reset(reset), .en_timer(en_timer), .m_tick(m_tick),
.sw_db(sw_db));

//Counter
counter u2

(-en(en_timer), .clk(clk), .reset(reset), .m_tick(m_tick));

endmodule

Top Design Verilog Test Fixture Code

“timescale 1ns / 1ps

module dbounce_fast_tb;

// Inputs
reg sw;
reg clk;
reg reset;

// Outputs
wire sw_db;

// Instantiate the Unit Under Test
dbounce_fast uut (

Sw(sw),
.clk(clk),
reset(reset),
.sw_db(sw_db)
);
//Clock

always #10 clk = Iclk;

initial begin
// Initialize Inputs
sw = 0;
clk = 0;
reset = 0;
#40;

//Bouncing Switch On
sw=1;
reset = 0;
#20;

sw = 0;
reset = 0;
#20;
sw=1;
reset = 0;
#20;

sw = 0;
reset = 0;
#20;
sw=1;
reset = 0;
#20;

sw = 0;
reset = 0;
#20;
sw=1;
reset = 0;
#20;

sw = 0;
reset = 0;
#20;
sw=1;
reset = 0;
#20;

//Switch On
sw=1;
reset = 0;
#400;

//Bouncing Switch Off
sw = 0;
reset = 0;
#20;
sw=1;
reset = 0;
#20;
sw=0;
reset = 0;
#0;
sw=1;
reset = 0;
#20;
sw=0;

reset = 0;
#20;
sw=1;
reset = 0;
#20;

sw = 0;
reset = 0;
#20;
sw=1;
reset = 0;
#20;

sw = 0;
reset = 0;
#20;

//Switch Off

sw = 0;
reset = 0;
#500;
end
endmodule

Top Design Verilog Test Fixture Waveform

1B ok
1§ sw
i sw_db

n N
1 @ en_timer

1;] m_tick
16
» Mg state_reg[1:0]

Appendix D
FPGA Implementation Top Level Design Verilog Code

module debounce_fast_fpga

(
input wire clk, reset,
input wire [1:0] btn,
output wire an_lo,
output wire an_hi,
output wire [6:0] sseg_lo,
output wire [6:0] sseg_hi

);

// signal declaration

reg [7:0] b_reg, d_reg;

wire [7:0] b_next, d_next;

reg btn_reg, db_reg;

wire db_level, db_tick, btn_tick, clr;

// instantiate 7-seg LED display time-multiplexing module
disp_hex_mux_s3e disp_unit_lo
(.cIk(clk), .reset(reset), .hex0(d_reg[7:4]), .hex1(d_reg[3:0]),
.an(an_lo), .sseg(sseg_lo));

disp_hex_mux_s3e disp_unit_hi
(.cIk(clk), .reset(reset), .hex0(b_reg[7:4]), .hex1(b_reg[3:0]),
.an(an_hi), .sseg(sseg_hi));

// instantiate debouncing circuit
/*
db_fsm db_unit //Dr. Chu's Debouncer
(.clk(clk), .reset(reset), .sw(btn[1]), .db(db_level));
*/
dbounce_fast de_unit //My Debouncer
(.clk(clk), .reset(reset), .sw(btn[1]), .sw_db(db_level));

// edge detection circuits
always @(posedge clk)
begin
btn_reg <= btn[1];
db_reg <= db_level;
end
assign btn_tick = ~btn_reg & btn[1];
assign db_tick = ~db_reg & db_level;

// two counters
assign clr = btn[0];
always @(posedge clk)
begin
b_reg <= b_next;
d_reg <= d_next;
end
assign b_next=(clr) ?78'b0:

(btn_tick) ? b_reg + 1 : b_reg;
assign d_next=(clr) ?8'b0:
(db_tick) ?d_reg+1:d_reg;

endmodule

Appendix E
User Constraints File (UCF)

s3e_debounce.ucf, 9.10.12, by Rod
(adapted from my s3e_stopwatch.ucf)

Pin assignment for Xilinx
Spartan-3E Starter board

Period constraint for 50MHz operation, from Ken C.
I#\#IET "clk" PERIOD = 20.0ns HIGH 50%;

z soldered 50MHz Clock.

I#\#IET "clk" LOC ="C9" | IOSTANDARD = LVTTL;

4 pushbuttons

#NET "BTN_EAST" LOC = "H13" | IOSTANDARD = LVTTL | PULLDOWN ;

NET "reset” LOC = "K17" | IOSTANDARD = LVTTL | PULLDOWN ; # "BTN_SOUTH"
NET "btn<0>" LOC = "V4" | IOSTANDARD = LVTTL | PULLDOWN ; # "BTN_NORTH"
NET "btn<1>"LOC ="D18" | IOSTANDARD = LVTTL | PULLDOWN ; # "BTN_WEST"
4 slide switches

#NET "sw<0>" LOC = "L13" | IOSTANDARD = LVTTL | PULLUP;

#NET "sw<1>" LOC = "L14" | IOSTANDARD = LVTTL | PULLUP;

#NET "sw<2>" LOC = "H18" | IOSTANDARD = LVTTL | PULLUP;

#NET "sw<3>"LOC="N17" | IOSTANDARD = LVTTL | PULLUP;

H oo Leds for debug -----------------

#NET "LED<7>" LOC = "F9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;

#NET "LED<6>" LOC = "E9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;

#NET "LED<5>" LOC="D11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;;

#NET "LED<4>"LOC ="C11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;

#NET "LED<3>" LOC = "F11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;

#NET "led<1>"LOC = "F11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ; # led1,0 for debug

#NET "LED<2>"LOC="E11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;
#NET "LED<1>" LOC ="E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;;
#NET "led<0>" LOC ="E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;

#NET "LED<0>" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;

NET "sseg_lo<6>" LOC = "A4" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segment a
NET "sseg_lo<5>" LOC = "C5" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segmentb
NET "sseg lo<4>" LOC = "B6" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segment c
NET "sseg_lo<3>" LOC = "F7" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segmentd
NET "sseg lo<2>" LOC = "C7" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segment e

NET "sseg lo<1>" LOC = "E8" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segment f

NET "sseg_lo<0>" LOC = "E9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segment g

NET "an_lo" LOC ="C11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# 2-digits enable

NET "sseg_hi<6>" LOC = "E11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# segment a
NET "sseg_hi<5>" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# segmentb
NET "sseg_hi<4>" LOC = "B13" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# segment
NET "sseg_hi<3>" LOC = "B14" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# segmentd
NET "sseg_hi<2>" LOC = "D14" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# segment e
NET "sseg_hi<1>" LOC = "B16" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# segment f
NET "sseg_hi<0>" LOC = "C4" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ; # segment g
NET "an_hi" LOC = "A11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 6 ;# 2-digits enable

